Generally, a neural network needs labeled examples to learn effectively. Unsupervised learning approaches to learn from unlabeled data have not worked very well. A generative adversarial network, or simply a GAN, is part of an unsupervised learning approach but based on differentiable generator networks. GANs were first invented by Ian Goodfellow and others in 2014. Since then they have become extremely popular. This is based on game theory and has two players or networks: a generator network and b) a discriminator network, both competing against each other. This dual network game theory-based approach vastly improved the process of learning from unlabeled data. The generator network produces fake data and passes it to a discriminator. The discriminator network also sees real data and predicts whether the data it receives is fake or...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Japan
Slovakia