Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Pandas Cookbook

You're reading from   Pandas Cookbook Recipes for Scientific Computing, Time Series Analysis and Data Visualization using Python

Arrow left icon
Product type Paperback
Published in Oct 2017
Publisher Packt
ISBN-13 9781784393878
Length 532 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Theodore Petrou Theodore Petrou
Author Profile Icon Theodore Petrou
Theodore Petrou
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Pandas Foundations FREE CHAPTER 2. Essential DataFrame Operations 3. Beginning Data Analysis 4. Selecting Subsets of Data 5. Boolean Indexing 6. Index Alignment 7. Grouping for Aggregation, Filtration, and Transformation 8. Restructuring Data into a Tidy Form 9. Combining Pandas Objects 10. Time Series Analysis 11. Visualization with Matplotlib, Pandas, and Seaborn

Understanding the differences between concat, join, and merge

The merge and join DataFrame (and not Series) methods and the concat function all provide very similar functionality to combine multiple pandas objects together. As they are so similar and they can replicate each other in certain situations, it can get very confusing when and how to use them correctly. To help clarify their differences, take a look at the following outline:

  • concat:
    • Pandas function
    • Combines two or more pandas objects vertically or horizontally
    • Aligns only on the index
    • Errors whenever a duplicate appears in the index
    • Defaults to outer join with option for inner
  • join:
    • DataFrame method
    • Combines two or more pandas objects horizontally
    • Aligns the calling DataFrame's column(s) or index with the other objects' index (and not the columns)
    • Handles duplicate values on the joining columns/index by...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image