Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Mesos

You're reading from   Mastering Mesos The ultimate guide to managing, building, and deploying large-scale clusters with Apache Mesos

Arrow left icon
Product type Paperback
Published in May 2016
Publisher Packt
ISBN-13 9781785886249
Length 352 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Akhil Das Akhil Das
Author Profile Icon Akhil Das
Akhil Das
Dipa Dubhashi Dipa Dubhashi
Author Profile Icon Dipa Dubhashi
Dipa Dubhashi
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Introducing Mesos FREE CHAPTER 2. Mesos Internals 3. Getting Started with Mesos 4. Service Scheduling and Management Frameworks 5. Mesos Cluster Deployment 6. Mesos Frameworks 7. Mesos Containerizers 8. Mesos Big Data Frameworks 9. Mesos Big Data Frameworks 2 Index

Two-level scheduling

Mesos has a two-level scheduling mechanism to allocate resources to and launch tasks on different frameworks. In the first level, the master process that manages slave processes running on each node in the Mesos cluster determines the free resources available on each node, groups them, and offers them to different frameworks based on organizational policies, such as priority or fair sharing. Organizations have the ability to define their own sharing policies via a custom allocation module as well.

In the second level, each framework's scheduler component that is registered as a client with the master accepts or rejects the resource offer made depending on the framework's requirements. If the offer is accepted, the framework's scheduler sends information regarding the tasks that need to be executed and the number of resources that each task requires to the Mesos master. The master transfers the tasks to the corresponding slaves, which assign the necessary resources to the framework's executor component, which manages the execution of all the required tasks in containers. When the tasks are completed, the containers are dismantled, and the resources are freed up for use by other tasks.

The following diagram and explanation from the Apache Mesos documentation (http://mesos.apache.org/documentation/latest/architecture/) explains this concept in more detail:

Two-level scheduling

Let's have a look at the pointers mentioned in the preceding diagram:

  • 1: Slave 1 reports to the master that it has four CPUs and 4 GB of memory free. The master then invokes the allocation module, which tells it that Framework 1 should be offered all the available resources.
  • 2: The master sends a resource offer describing these resources to Framework 1.
  • 3: The framework's scheduler replies to the master with information about two tasks to run on the slave using two CPUs and 1 GB RAM for the first task and one CPU and 2 GB RAM for the second task.
  • 4: The master sends the tasks to the slave, which allocates appropriate resources to the framework's executor, which in turn launches the two tasks. As one CPU and 1 GB of RAM are still free, the allocation module may now offer them to Framework 2. In addition, this resource offers process repeats when tasks finish and new resources become free.

Mesos also provides frameworks with the ability to reject resource offers. A framework can reject the offers that do not meet its requirements. This allows frameworks to support a wide variety of complex resource constraints while keeping Mesos simple at the same time. A policy called delay scheduling, in which frameworks wait for a finite time to get access to the nodes storing their input data, gives a fair level of data locality albeit with a slight latency tradeoff.

If the framework constraints are complex, it is possible that a framework might need to wait before it receives a suitable resource offer that meets its requirements. To tackle this, Mesos allows frameworks to set filters specifying the criteria that they will use to always reject certain resources. A framework can set a filter stating that it can run only on nodes with at least 32 GB of RAM space free, for example. This allows it to bypass the rejection process, minimizes communication overheads, and thus reduces overall latency.

You have been reading a chapter from
Mastering Mesos
Published in: May 2016
Publisher: Packt
ISBN-13: 9781785886249
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image