Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Hadoop 3

You're reading from   Mastering Hadoop 3 Big data processing at scale to unlock unique business insights

Arrow left icon
Product type Paperback
Published in Feb 2019
Publisher Packt
ISBN-13 9781788620444
Length 544 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Timothy Wong Timothy Wong
Author Profile Icon Timothy Wong
Timothy Wong
Manish Kumar Manish Kumar
Author Profile Icon Manish Kumar
Manish Kumar
Chanchal Singh Chanchal Singh
Author Profile Icon Chanchal Singh
Chanchal Singh
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Section 1: Introduction to Hadoop 3 FREE CHAPTER
2. Journey to Hadoop 3 3. Deep Dive into the Hadoop Distributed File System 4. YARN Resource Management in Hadoop 5. Internals of MapReduce 6. Section 2: Hadoop Ecosystem
7. SQL on Hadoop 8. Real-Time Processing Engines 9. Widely Used Hadoop Ecosystem Components 10. Section 3: Hadoop in the Real World
11. Designing Applications in Hadoop 12. Real-Time Stream Processing in Hadoop 13. Machine Learning in Hadoop 14. Hadoop in the Cloud 15. Hadoop Cluster Profiling 16. Section 4: Securing Hadoop
17. Who Can Do What in Hadoop 18. Network and Data Security 19. Monitoring Hadoop 20. Other Books You May Enjoy

Common machine learning challenges

The following are some of the common challenges that you will face while running your machine learning application:

  • Data quality: Data from sources is, most of the time, not suitable for machine learning. It has to be cleaned or checked for data quality first. Data has to be in the format that is suitable for the machine learning processes that you want to run. One such example would be removing nulls. The popular machine learning algorithm Random Forest does not support nulls.
  • Data scaling: Sometimes, your data is comprised of attributes that vary in magnitude or scale. So, to prevent machine learning algorithms from being unbiased to re-scaling, under-scaled or over-scaled, attributes of the same scale is helpful. This helps machine learning optimization algorithms like gradient descent a great deal. Algorithms that iteratively weigh...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime