Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Embedded Linux Programming

You're reading from   Mastering Embedded Linux Programming Create fast and reliable embedded solutions with Linux 5.4 and the Yocto Project 3.1 (Dunfell)

Arrow left icon
Product type Paperback
Published in May 2021
Publisher Packt
ISBN-13 9781789530384
Length 758 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Frank Vasquez Frank Vasquez
Author Profile Icon Frank Vasquez
Frank Vasquez
Mr. Chris Simmonds Mr. Chris Simmonds
Author Profile Icon Mr. Chris Simmonds
Mr. Chris Simmonds
Arrow right icon
View More author details
Toc

Table of Contents (27) Chapters Close

Preface 1. Section 1: Elements of Embedded Linux
2. Chapter 1: Starting Out FREE CHAPTER 3. Chapter 2: Learning about Toolchains 4. Chapter 3: All about Bootloaders 5. Chapter 4: Configuring and Building the Kernel 6. Chapter 5: Building a Root Filesystem 7. Chapter 6: Selecting a Build System 8. Chapter 7: Developing with Yocto 9. Chapter 8: Yocto Under the Hood 10. Section 2: System Architecture and Design Decisions
11. Chapter 9: Creating a Storage Strategy 12. Chapter 10: Updating Software in the Field 13. Chapter 11: Interfacing with Device Drivers 14. Chapter 12: Prototyping with Breakout Boards 15. Chapter 13: Starting Up – The init Program 16. Chapter 14: Starting with BusyBox runit 17. Chapter 15: Managing Power 18. Section 3: Writing Embedded Applications
19. Chapter 16: Packaging Python 20. Chapter 17: Learning about Processes and Threads 21. Chapter 18: Managing Memory 22. Section 4: Debugging and Optimizing Performance
23. Chapter 19: Debugging with GDB 24. Chapter 20: Profiling and Tracing 25. Chapter 21: Real-Time Programming 26. Other Books You May Enjoy

The boot sequence

In simpler times, some years ago, it was only necessary to place the bootloader in non-volatile memory at the reset vector of the processor. NOR flash memory was common at that time and, since it can be mapped directly into the address space, it was the ideal method of storage. The following diagram shows such a configuration, with the Reset vector at 0xfffffffc at the top end of an area of flash memory. The bootloader is linked so that there is a jump instruction at that location that points to the start of the bootloader code:

Figure 3.1 – NOR flash

Figure 3.1 – NOR flash

From that point on, the bootloader code running in NOR flash memory can initialize the DRAM controller so that the main memory – the DRAM – becomes available and then copies itself into the DRAM. Once fully operational, the bootloader can load the kernel from flash memory into DRAM and transfer control to it.

However, once you move away from a simple linearly addressable...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image