Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
LLM Engineer's Handbook

You're reading from   LLM Engineer's Handbook Master the art of engineering large language models from concept to production

Arrow left icon
Product type Paperback
Published in Oct 2024
Publisher Packt
ISBN-13 9781836200079
Length 522 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Maxime Labonne Maxime Labonne
Author Profile Icon Maxime Labonne
Maxime Labonne
Paul Iusztin Paul Iusztin
Author Profile Icon Paul Iusztin
Paul Iusztin
Alex Vesa Alex Vesa
Author Profile Icon Alex Vesa
Alex Vesa
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Understanding the LLM Twin Concept and Architecture 2. Tooling and Installation FREE CHAPTER 3. Data Engineering 4. RAG Feature Pipeline 5. Supervised Fine-Tuning 6. Fine-Tuning with Preference Alignment 7. Evaluating LLMs 8. Inference Optimization 9. RAG Inference Pipeline 10. Inference Pipeline Deployment 11. MLOps and LLMOps 12. Other Books You May Enjoy
13. Index
Appendix: MLOps Principles

Summary

In this chapter, we learned what design decisions to make before serving an ML model, whether an LLM or not, by walking you through the three fundamental deployment types for ML models: online real-time inference, asynchronous inference, and offline batch transform. Then, we considered whether building our ML-serving service as a monolith application made sense or splitting it into two microservices, such as an LLM microservice and a business microservice. To do this, we weighed the pros and cons of a monolithic versus microservices architecture in model-serving.

Next, we walked you through deploying our fine-tuned LLM Twin to an AWS SageMaker Inference endpoint. We also saw how to implement the business microservice using FastAPI, which consists of all the RAG steps based on the retrieval module implemented in Chapter 9 and the LLM microservice deployed on AWS SageMaker. Ultimately, we explored why we have to implement an autoscaling strategy. We also reviewed a popular...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime