Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
LLM Engineer's Handbook

You're reading from   LLM Engineer's Handbook Master the art of engineering large language models from concept to production

Arrow left icon
Product type Paperback
Published in Oct 2024
Publisher Packt
ISBN-13 9781836200079
Length 522 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Maxime Labonne Maxime Labonne
Author Profile Icon Maxime Labonne
Maxime Labonne
Paul Iusztin Paul Iusztin
Author Profile Icon Paul Iusztin
Paul Iusztin
Alex Vesa Alex Vesa
Author Profile Icon Alex Vesa
Alex Vesa
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Understanding the LLM Twin Concept and Architecture 2. Tooling and Installation FREE CHAPTER 3. Data Engineering 4. RAG Feature Pipeline 5. Supervised Fine-Tuning 6. Fine-Tuning with Preference Alignment 7. Evaluating LLMs 8. Inference Optimization 9. RAG Inference Pipeline 10. Inference Pipeline Deployment 11. MLOps and LLMOps 12. Other Books You May Enjoy
13. Index
Appendix: MLOps Principles

Preference alignment

Preference alignment regroups techniques to fine-tune models on preference data. In this section, we provide an overview of this field and then focus on the technique we will implement: Direct Preference Optimization (DPO).

Reinforcement Learning from Human Feedback

Reinforcement Learning from Human Feedback (RLHF) combines reinforcement learning (RL) with human input to align models with human preferences and values. RLHF emerged as a response to challenges in traditional RL methods, particularly the difficulty of specifying reward functions for complex tasks and the potential for misalignment between engineered rewards and intended objectives.

The origins of RLHF can be traced back to the field of preference-based reinforcement learning (PbRL), which was independently introduced by Akrour et al. and Cheng et al. in 2011. PbRL aimed to infer objectives from qualitative feedback, such as pairwise preferences between behaviors, rather than relying on...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime