Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Python

You're reading from   Learning Python Learn to code like a professional with Python - an open source, versatile, and powerful programming language

Arrow left icon
Product type Paperback
Published in Dec 2015
Publisher Packt
ISBN-13 9781783551712
Length 442 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Fabrizio Romano Fabrizio Romano
Author Profile Icon Fabrizio Romano
Fabrizio Romano
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction and First Steps – Take a Deep Breath FREE CHAPTER 2. Built-in Data Types 3. Iterating and Making Decisions 4. Functions, the Building Blocks of Code 5. Saving Time and Memory 6. Advanced Concepts – OOP, Decorators, and Iterators 7. Testing, Profiling, and Dealing with Exceptions 8. The Edges – GUIs and Scripts 9. Data Science 10. Web Development Done Right 11. Debugging and Troubleshooting 12. Summing Up – A Complete Example Index

Comprehensions


Python offers you different types of comprehensions: list, dict, and set.

We'll concentrate on the first one for now, and then it will be easy to explain the other two.

A list comprehension is a quick way of making a list. Usually the list is the result of some operation that may involve applying a function, filtering, or building a different data structure.

Let's start with a very simple example I want to calculate a list with the squares of the first 10 natural numbers. How would you do it? There are a couple of equivalent ways:

squares.map.py

# If you code like this you are not a Python guy! ;)
>>> squares = []
>>> for n in range(10):
...     squares.append(n ** 2)
...
>>> list(squares)
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

# This is better, one line, nice and readable
>>> squares = map(lambda n: n**2, range(10))
>>> list(squares)
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

The preceding example should be nothing new for you. Let's see...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image