Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Apache Spark 2

You're reading from   Learning Apache Spark 2 A beginner's guide to real-time Big Data processing using the Apache Spark framework

Arrow left icon
Product type Paperback
Published in Mar 2017
Publisher Packt
ISBN-13 9781785885136
Length 356 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Muhammad Asif Abbasi Muhammad Asif Abbasi
Author Profile Icon Muhammad Asif Abbasi
Muhammad Asif Abbasi
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Architecture and Installation FREE CHAPTER 2. Transformations and Actions with Spark RDDs 3. ETL with Spark 4. Spark SQL 5. Spark Streaming 6. Machine Learning with Spark 7. GraphX 8. Operating in Clustered Mode 9. Building a Recommendation System 10. Customer Churn Prediction Theres More with Spark

Running Spark examples

Spark comes with packaged examples for Java, Python, Scala, and R. We'll demonstrate how you can run a program provided in the examples directory.

As we only have a local installation, we'll run the Spark PI example locally on 4 cores. The examples are available at the Apache Spark GitHub page http://bit.ly/28S1hDY. We've taken an excerpt out of the example to explain how SparkContext is initialized:

    val conf = new SparkConf().setAppName("Spark Pi") 
    val spark = new SparkContext(conf) 

The example comes packaged with Spark binaries. The code can be downloaded from GitHub too. Looking closely at the code you will realize that we instantiate our own SparkContext object from a SparkConf object. The application name Spark PI will appear in the Spark UI as a running application during the execution, and will help you track the status of your job. Remember, this is in stark contrast to the spark-shell where a SparkContext is automatically instantiated and passed as a reference.

Let's run this example with Spark submit script:

Running Spark examples

The log of the script spans over multiple pages, so we will skip over the intermediate manipulation step and go to the part where the output is printed. Remember in this case we are running Spark Pi, which prints out a value of Pi. Here's the second part of the log:

Running Spark examples

Figure 1.17: Running Spark Pi example

At the moment we have seen an example in Scala. If we see the example for this in Python, you will realize that we will just need to pass in the Python source code. We do not have to pass in any JAR files, as we are not referencing any other code. Similar to the Scala example, we have to instantiate the SparkContext directly, which is unlike how PySpark shell automatically provides you with a reference to the context object:

sc = SparkContext(appName="PythonPi")

Running the Spark Pi example is a bit different to the Scala example:

Running Spark examples

Similar to the PySpark example, the log of the SparkPi program in spark-shell spans multiple pages. We'll just move directly to the part where the value of Pi is printed in the log:

Running Spark examples

Figure 1.18: Running Spark Pi Python example

Building your own programs

We have tested pre-compiled programs but, as discussed earlier in this chapter, you can create your own programs and use sbt or Maven to package the application together and run using spark-submit script. In the later chapters in this book, we will use both the REPL environments and spark-submit for various code examples. For a complete code example, we'll build a Recommendation system in Chapter 9, Building a Recommendation System, and predict customer churn in a telco environment in Chapter 10, Customer Churn Prediction. Both of these examples (though fictional) will help you understand the overall life cycle of a machine learning application.

You have been reading a chapter from
Learning Apache Spark 2
Published in: Mar 2017
Publisher: Packt
ISBN-13: 9781785885136
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image