In the previous chapter, we discussed classifying time series data for multi-variate features. In this chapter, we will create a long short-term memory (LSTM) neural network to classify univariate time series data. Our neural network will learn how to classify a univariate time series. We will have UCI (short for University of California Irvine) synthetic control data on top of which the neural network will be trained. There will be 600 sequences of data, with every sequence separated by a new line to make our job easier. Every sequence will have values recorded at 60 time steps. Since it is a univariate time series, we will only have columns in CSV files for every example recorded. Every sequence is an example recorded. We will split these sequences of data into train/test sets to perform training and evaluation...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine