Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Haskell High Performance Programming

You're reading from   Haskell High Performance Programming Write Haskell programs that are robust and fast enough to stand up to the needs of today

Arrow left icon
Product type Paperback
Published in Sep 2016
Publisher Packt
ISBN-13 9781786464217
Length 408 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Samuli Thomasson Samuli Thomasson
Author Profile Icon Samuli Thomasson
Samuli Thomasson
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Identifying Bottlenecks 2. Choosing the Correct Data Structures FREE CHAPTER 3. Profile and Benchmark to Your Heart's Content 4. The Devil's in the Detail 5. Parallelize for Performance 6. I/O and Streaming 7. Concurrency and Performance 8. Tweaking the Compiler and Runtime System (GHC) 9. GHC Internals and Code Generation 10. Foreign Function Interface 11. Programming for the GPU with Accelerate 12. Scaling to the Cloud with Cloud Haskell 13. Functional Reactive Programming 14. Library Recommendations Index

Chapter 1. Identifying Bottlenecks

You have probably at least once written some very neat Haskell you were very proud of, until you test the code and it took ages to give an answer or even ran out of memory. This is very normal, especially if you are used to performance semantics in which performance can be analyzed on a step-by-step basis. Analyzing Haskell code requires a different mental model that is more akin to graph traversal.

Luckily, there is no reason to think that writing efficient Haskell is sorcery known only by math wizards or academics. Most bottlenecks are straightforward to identify with some understanding of Haskell's evaluation schema. This chapter will help you to reason about the performance of Haskell programs and to avoid some easily recognizable patterns of bad performance:

  • Understanding lazy evaluation schemas and their implications
  • Handling intended and unintended value memoization (CAFs)
  • Utilizing (guarded) recursion and the worker/wrapper pattern efficiently
  • Using accumulators correctly to avoid space leaks
  • Analyzing strictness and space usage of Haskell programs
  • Important compiler code optimizations, inlining and fusion
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime