The term IoT was coined by Kevin Ashton in 1999. At that time, most of the data fed to computers was generated by humans; he proposed that the best way would be for computers to take data directly, without any intervention from humans. And so he proposed things such as RFID and sensors, which gather data, should be connected to the network, and feed directly to the computer.
Today IoT (also called the internet of everything and sometimes, the fog network) refers to a wide range of things such as sensors, actuators, and smartphones connected to the internet. These things can be anything: a person with a wearable device (or even mobile phone), an RFID-tagged animal, or even our day-to-day devices such as a refrigerator, washing machine, or even a coffee machine. These things can be physical things—that is, things that exist in the physical world and can be sensed, actuated, and connected—or of the information world (a virtual thing)—that is, things that aren't tangibly present but exist as information (data) and can be stored, processed, and accessed. These things necessarily have the ability to communicate directly with the internet; optionally, they might have the potentiality of sensing, actuation, data capture, data storage, and data processing.
The International Telecommunication Unit (ITU), a United Nations agency, defines IoT as:
You can learn more at https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx.
The wide expanse of ICT already provided us with communication at any time or any place; the IoT added the new dimension of ANY THING communication:
It's predicted that IoT as a technology will have a far-reaching impact on people and the society we live in. To give you a glimpse of its far-reaching effects, consider the following scenarios:
- You, like me, live in a high rise building and are very fond of plants. With lots of effort and care, you've made a small indoor garden of your own using potted plants. Your boss asks you to go for a week-long trip, and you're worried your plants won't survive for a week without water. The IoT solution is to add soil moisture sensors to your plants, connect them to the internet, and add actuators to remotely switch on or off the water supply and artificial sunlight. Now, you can be anywhere in the world, but your plants won't die, and you can check the individual plant's soil moisture condition and water it as needed.
- You had a very tiring day at the office; you just want to go home and have someone make you coffee, prepare your bed, and heat up water for a bath, but sadly you're home alone. Not anymore; IoT can help. Your IoT-enabled home assistant can prepare the right flavor coffee from the coffee machine, order your smart water heater to switch on and maintain the water temperature exactly the way you want, and ask your smart air conditioner to switch on and cool the room.
The choices are limited only by your imagination. The two preceding scenarios correspond to consumer IoT—the IoT with a focus on consumer-oriented applications. There also exists a large scope of Industry IoT (IIoT) where manufacturers and industries optimize processes and implement remote monitoring capabilities to increase productivity and efficiency. In this book, you'll find the hands-on experience with both IoT applications.