Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Artificial Intelligence for Beginners

You're reading from   Hands-On Artificial Intelligence for Beginners An introduction to AI concepts, algorithms, and their implementation

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781788991063
Length 362 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
David Dindi David Dindi
Author Profile Icon David Dindi
David Dindi
Patrick D. Smith Patrick D. Smith
Author Profile Icon Patrick D. Smith
Patrick D. Smith
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. The History of AI 2. Machine Learning Basics FREE CHAPTER 3. Platforms and Other Essentials 4. Your First Artificial Neural Networks 5. Convolutional Neural Networks 6. Recurrent Neural Networks 7. Generative Models 8. Reinforcement Learning 9. Deep Learning for Intelligent Agents 10. Deep Learning for Game Playing 11. Deep Learning for Finance 12. Deep Learning for Robotics 13. Deploying and Maintaining AI Applications 14. Other Books You May Enjoy

Summary

Machine learning, and by extension, deep learning, relies on the building blocks of linear algebra and statistics at its core. Vectors, matrices, and tensors provide the means by which we represent input data and parameters in machine learning algorithms, and the computations between these are the core operations of these algorithms. Likewise, distributions and probabilities help us model data and events in machine learning.

We also covered two classes of algorithms that will inform how we think about ANNs in further chapters: supervised learning methods and unsupervised learning methods. With supervised learning, we provide the algorithm with a set of features and labels, and it learns how to appropriately map certain feature combinations to labels. In unsupervised learning, the algorithm isn't provided with any labels at all, and it must infer relationships and...

You have been reading a chapter from
Hands-On Artificial Intelligence for Beginners
Published in: Oct 2018
Publisher: Packt
ISBN-13: 9781788991063
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image