Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Graph Machine Learning

You're reading from   Graph Machine Learning Take graph data to the next level by applying machine learning techniques and algorithms

Arrow left icon
Product type Paperback
Published in Jun 2021
Publisher Packt
ISBN-13 9781800204492
Length 338 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Aldo Marzullo Aldo Marzullo
Author Profile Icon Aldo Marzullo
Aldo Marzullo
Claudio Stamile Claudio Stamile
Author Profile Icon Claudio Stamile
Claudio Stamile
Enrico Deusebio Enrico Deusebio
Author Profile Icon Enrico Deusebio
Enrico Deusebio
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1 – Introduction to Graph Machine Learning
2. Chapter 1: Getting Started with Graphs FREE CHAPTER 3. Chapter 2: Graph Machine Learning 4. Section 2 – Machine Learning on Graphs
5. Chapter 3: Unsupervised Graph Learning 6. Chapter 4: Supervised Graph Learning 7. Chapter 5: Problems with Machine Learning on Graphs 8. Section 3 – Advanced Applications of Graph Machine Learning
9. Chapter 6: Social Network Graphs 10. Chapter 7: Text Analytics and Natural Language Processing Using Graphs 11. Chapter 8:Graph Analysis for Credit Card Transactions 12. Chapter 9: Building a Data-Driven Graph-Powered Application 13. Chapter 10: Novel Trends on Graphs 14. Other Books You May Enjoy

Graph neural networks

GNNs are deep learning methods that work on graph-structured data. This family of methods is also known as geometric deep learning and is gaining increasing interest in a variety of applications, including social network analysis and computer graphics.

According to the taxonomy defined in Chapter 2, Graph Machine Learning, the encoder part takes as input both the graph structure and the node features. Those algorithms can be trained either with or without supervision. In this chapter, we will focus on unsupervised training, while the supervised setting will be explored in Chapter 4, Supervised Graph Learning.

If you are familiar with the concept of a Convolutional Neural Network (CNN), you might already know that they are able to achieve impressive results when dealing with regular Euclidean spaces, such as text (one-dimensional), images (two-dimensional), and videos (three-dimensional). A classic CNN consists of a sequence of layers and each layer extracts...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime