Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Google Machine Learning and Generative AI for Solutions Architects

You're reading from   Google Machine Learning and Generative AI for Solutions Architects ​Build efficient and scalable AI/ML solutions on Google Cloud

Arrow left icon
Product type Paperback
Published in Jun 2024
Publisher Packt
ISBN-13 9781803245270
Length 552 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Kieran Kavanagh Kieran Kavanagh
Author Profile Icon Kieran Kavanagh
Kieran Kavanagh
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Part 1:The Basics FREE CHAPTER
2. Chapter 1: AI/ML Concepts, Real-World Applications, and Challenges 3. Chapter 2: Understanding the ML Model Development Life Cycle 4. Chapter 3: AI/ML Tooling and the Google Cloud AI/ML Landscape 5. Part 2:Diving in and building AI/ML solutions
6. Chapter 4: Utilizing Google Cloud’s High-Level AI Services 7. Chapter 5: Building Custom ML Models on Google Cloud 8. Chapter 6: Diving Deeper – Preparing and Processing Data for AI/ML Workloads on Google Cloud 9. Chapter 7: Feature Engineering and Dimensionality Reduction 10. Chapter 8: Hyperparameters and Optimization 11. Chapter 9: Neural Networks and Deep Learning 12. Chapter 10: Deploying, Monitoring, and Scaling in Production 13. Chapter 11: Machine Learning Engineering and MLOps with Google Cloud 14. Chapter 12: Bias, Explainability, Fairness, and Lineage 15. Chapter 13: ML Governance and the Google Cloud Architecture Framework 16. Chapter 14: Additional AI/ML Tools, Frameworks, and Considerations 17. Part 3:Generative AI
18. Chapter 15: Introduction to Generative AI 19. Chapter 16: Advanced Generative AI Concepts and Use Cases 20. Chapter 17: Generative AI on Google Cloud 21. Chapter 18: Bringing It All Together: Building ML Solutions with Google Cloud and Vertex AI 22. Index 23. Other Books You May Enjoy

AutoML

Some of the services we discussed in the previous sections use completely pre-trained models, and others allow you to bring your own data to either train or up-train a model based on your data. Pre-trained models are trained on datasets provided by Google or other sources, and the term, up-train, refers to augmenting a pre-trained model with additional data. If you want to create more customized use cases than those supported by the high-level API services, you may want to train your own models. Vertex AI, which we will describe later in this chapter, provides a plethora of tools for implementing every step in the model development process. However, before we get to the level of customizing every step in the process, one way in which you can easily start getting inferences from ML models that are trained on your data in Google Cloud is to use AutoML, which enables developers with limited ML expertise to train models specific to their business needs in as little as a few minutes...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image