Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Getting Started with Python Data Analysis

You're reading from   Getting Started with Python Data Analysis Learn to use powerful Python libraries for effective data processing and analysis

Arrow left icon
Product type Paperback
Published in Nov 2015
Publisher
ISBN-13 9781785285110
Length 188 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (10) Chapters Close

Preface 1. Introducing Data Analysis and Libraries FREE CHAPTER 2. NumPy Arrays and Vectorized Computation 3. Data Analysis with Pandas 4. Data Visualization 5. Time Series 6. Interacting with Databases 7. Data Analysis Application Examples 8. Machine Learning Models with scikit-learn Index

Unsupervised learning – clustering and dimensionality reduction


A lot of existing data is not labeled. It is still possible to learn from data without labels with unsupervised models. A typical task during exploratory data analysis is to find related items or clusters. We can imagine the Iris dataset, but without the labels:

While the task seems much harder without labels, one group of measurements (in the lower-left) seems to stand apart. The goal of clustering algorithms is to identify these groups.

We will use K-Means clustering on the Iris dataset (without the labels). This algorithm expects the number of clusters to be specified in advance, which can be a disadvantage. K-Means will try to partition the dataset into groups, by minimizing the within-cluster sum of squares.

For example, we instantiate the KMeans model with n_clusters equal to 3:

>>> from sklearn.cluster import KMeans
>>> km = KMeans(n_clusters=3)

Similar to supervised algorithms, we can use the fit methods...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime