Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Getting Started with DuckDB

You're reading from   Getting Started with DuckDB A practical guide for accelerating your data science, data analytics, and data engineering workflows

Arrow left icon
Product type Paperback
Published in Jun 2024
Publisher Packt
ISBN-13 9781803241005
Length 382 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Ned Letcher Ned Letcher
Author Profile Icon Ned Letcher
Ned Letcher
Simon Aubury Simon Aubury
Author Profile Icon Simon Aubury
Simon Aubury
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Chapter 1: An Introduction to DuckDB FREE CHAPTER 2. Chapter 2: Loading Data into DuckDB 3. Chapter 3: Data Manipulation with DuckDB 4. Chapter 4: DuckDB Operations and Performance 5. Chapter 5: DuckDB Extensions 6. Chapter 6: Semi-Structured Data Manipulation 7. Chapter 7: Setting up the DuckDB Python Client 8. Chapter 8: Exploring DuckDB’s Python API 9. Chapter 9: Exploring DuckDB’s R API 10. Chapter 10: Using DuckDB Effectively 11. Chapter 11: Hands-On Exploratory Data Analysis with DuckDB 12. Chapter 12: DuckDB – The Wider Pond 13. Index 14. Other Books You May Enjoy

Summary

In this chapter, we unpacked DuckDB, situating it within the landscape of databases and data processing tools, finding it to be a fully featured DBMS that is optimized for high performance over analytical workloads, while also being simple to install and work with by virtue of its in-process mode of operation.

We identified two broad areas of application where DuckDB is seeing much excitement and adoption: scaling and supercharging data science, data analytics, and ad hoc data-wrangling workflows, and forming a building block for operational data engineering infrastructure and interactive analytical data applications. We also outlined the properties of DuckDB that make it excel at these use cases: its performance, ease of use, versatility, powerful analytics capabilities, and an engaged community. Understanding DuckDB’s strengths and capabilities is important for you to be able to spot opportunities for adopting it in your own workflows, as well as being able to recognize when an alternative data processing approach would be more appropriate.

We then looked at DuckDB deployment options, seeing the wide range of DuckDB clients available, before getting DuckDB up and running on your own machine. We then finished with a short primer on some of the fundamentals of SQL. With these preparatory steps complete, you are now ready to dive into the hands-on DuckDB SQL examples we’ll be covering across the book.

In the next chapter, we’re going to dive into the topic of loading data into DuckDB, by exploring DuckDB’s versatile range of data ingestion patterns across a range of data sources and data formats. This will set us up for being able to explore DuckDB’s powerful analytical querying and data-wrangling capabilities.

You have been reading a chapter from
Getting Started with DuckDB
Published in: Jun 2024
Publisher: Packt
ISBN-13: 9781803241005
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image