Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Frank Kane's Taming Big Data with Apache Spark and Python

You're reading from   Frank Kane's Taming Big Data with Apache Spark and Python Real-world examples to help you analyze large datasets with Apache Spark

Arrow left icon
Product type Paperback
Published in Jun 2017
Publisher Packt
ISBN-13 9781787287945
Length 296 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Frank Kane Frank Kane
Author Profile Icon Frank Kane
Frank Kane
Arrow right icon
View More author details
Toc

Table of Contents (8) Chapters Close

Preface 1. Getting Started with Spark FREE CHAPTER 2. Spark Basics and Spark Examples 3. Advanced Examples of Spark Programs 4. Running Spark on a Cluster 5. SparkSQL, DataFrames, and DataSets 6. Other Spark Technologies and Libraries 7. Where to Go From Here? – Learning More About Spark and Data Science

Introducing SparkSQL


What is structured data? Basically, it means that when we extend the concept of an RDD to a DataFrame object, we provide the data in the RDD with some structure.

One way to think of it is that it's fundamentally an RDD of row objects. By doing this, we can construct SQL queries. We can have distinct columns in these rows, and we can actually form SQL queries and issue commands in a SQL-like style, which we'll see shortly. Because we have an actual schema associated with the DataFrame, it means that Spark can actually do even more optimization than what it normally would. So, it can do query optimization, just like you would on a SQL database, when it tries to figure out the optimal plan for executing your Spark script. Another nice thing is that you can directly read and write to JSON files or JDBC-compiled and compliant databases. This means that if you do have your source data that's already in a structured format, for example, inside a relational database or inside...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image