Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Flask Blueprints
Flask Blueprints

Flask Blueprints: Dive into the world of the Flask microframework to develop an array of web applications

eBook
€8.99 €29.99
Paperback
€36.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Flask Blueprints

Chapter 1. Starting on the Right Foot – Using Virtualenv

One of the great difficulties in modern software development is that of dependency management. Generally, a dependency of a software project consists of a library or component that is required for the project to function correctly. In the case of a Flask application (and more generally, that of a Python application), most dependencies are comprised of specially organized and annotated source files. Once created, these packages of source files may then be included in other projects and so forth. For some, this chain of dependencies can become an unmanageable mess, where the slightest alteration to any of the libraries in the chain can cause a cascade of incompatibilities that would bring further development to a screeching halt. In the Python world, as you may know already, the fundamental unit of a reusable set of source files is that of a Python module (a file that contains definitions and statements). Once you've created a module on your local filesystem and ensured that it is in your system's PYTHONPATH, including it in a newly created project is as simple as specifying the import, which is as follows:

import the_custom_module

Where the_custom_module.py is a file that exists somewhere in $PYTHONPATH of the system executing the program.

Note

The $PYTHONPATH can include paths to the compressed archives (.zip folders) in addition to the normal file paths.

This is not where the story ends, of course. While modules littering your local filesystem might be convenient at first, what happens when you want to share some of the code that you've written for others? Usually, this would entail emailing/Dropboxing the files in question, however, this is obviously a very cumbersome and error-prone solution. Thankfully, this is a problem that has been considered and some progress has been made in alleviating the common issues. The most significant of these advances is the subject of this chapter, and how the following techniques for creating reusable, isolated packages of code can be leveraged to ease the development of a Flask application:

  • Python packaging with pip and setuptools
  • Encapsulation of virtual environments with virtualenv

The solution presented by the various Python packaging paradigms/libraries is far from perfect; one sure way to start an argument with a passionate Python developer is to proclaim that the packaging problem has been solved! We still have a long way to go for that but headway is being made in incremental steps with improvements to setuptools and various other libraries used in building, maintaining, and distributing a reusable Python code.

In this chapter, when we refer to a package, what we will actually be talking about would be succinctly described as a distribution—a bundle of software to be installed from a remote source—and not a collection of modules in a folder structure that utilizes the__init__.py convention in order to delineate the folders containing the modules that we want to be importable.

Setuptools and pip

When a developer wants to make their code more widely available, one of the first steps will be to create a setuptools-compatible package.

Most of the distributions of a modern Python version will come with setuptools already installed. If it is not present on your system of choice, then obtaining it is relatively simple, with additional instructions available on the official documentation:

wget https://bootstrap.pypa.io/ez_setup.py -O - | python

After setuptools is installed, the basic requirement to create a compatible package is the creation of a setup.py file at the root of your project. The primary content of this file should be the invocation of a setup() function with a few mandatory (and many optional) arguments, as follows:

from setuptools import setup

setup(
    name="My Great Project",
    version="0.0.1",
    author="Jane Doe",
    author_email="jane@example.com",
    description= "A brief summary of the project.",
    license="BSD",
    keywords="example tutorial flask",
    url="http://example.com/my-great-project",
    packages=['foobar','tests'],
    long_description="A much longer project description.",
    classifiers=[
        "Development Status :: 3 - Alpha",
        "Topic :: Utilities",
        "License :: OSI Approved :: BSD License",
    ],
)

Tip

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Once the package has been created, most developers will choose to upload their newly minted package to PyPI—the official source of nearly all Python packages—using the built-in tools that are provided by setuptools itself. While the use of this particular public PyPI repository is not a requirement (it's even possible to set up your own personal package index), most Python developers will expect to find their packages here.

This brings us to one more essential piece of the puzzle—the pip Python package installer. If you have Python 2.7.9 or greater installed, then pip will already be present. Some distributions might have it preinstalled for you or it might be present in a system-level package. For a Debian-like distribution of Linux, it may be installed via the following command:

apt-get install python-pip

Similarly, other Linux-based distributions will have their own recommended package managers. If you'd rather obtain the source and install it manually, it is a simple matter of fetching a file and running it using the Python interpreter:

$ curl -o get-pip.py https://bootstrap.pypa.io/get-pip.py
$ python get-pip.py

Pip is a tool for installing Python packages (and is itself a Python package). While it is not the only player in the game, pip is by far the most widely used.

Note

The predecessor to pip is easy_install, which has largely been replaced in the Python community by the former. The easy_install module suffered some relatively major problems, such as allowing partially completed installations, the inability to uninstall a package without requiring the user to manually delete the related .egg files, and console output that contained the useful success and error messages that allowed the developer to determine the best course of action in case something went wrong.

One can invoke pip in the command line to install, say, a scientific computing package on the local filesystem:

$ pip install numpy

The preceding command will query the default PyPI index for a package named numpy and download the latest version to a special place in your system, usually /usr/local/lib/pythonX.Y/site-packages (X and Y are the major/minor versions of the Python version that pip points to). This operation may require root privileges and would thus require sudo or similar actions to allow it to be completed.

One of the many benefits of virtual environments, which we will explore shortly, is that they generally avoid the privilege escalation requirement that can plague system-level changes to installed packages.

Once this operation is completed successfully, you now have the ability to import the numpy package into new modules and use any and all of the functionalities that it exposes:

import numpy

x = numpy.array([1, 2, 3])
sum = numpy.sum(x)
print sum  # prints 6

Once we have this package (or any other, for that matter) installed, there's nothing stopping us from fetching additional packages in the usual way. Moreover, we can install multiple packages at the same time by providing their names as additional arguments to the install command:

$ pip install scipy pandas # etc.

Avoiding dependency hell, the Python way

New developers might be tempted to install every interesting package that they come across. In doing so, they might realize that this quickly degrades into a Kafkaesque situation where previously installed packages may cease to function and newly installed packages may behave unpredictably, if they manage to get installed successfully at all. The problem with the preceding approach, as some of you may have guessed, is that of conflicting package dependencies. Say for example, we have package A installed; it depends on version 1 of package Q and version 1 of package R. Package B depends on version 2 of package R (where versions 1 and 2 are not API-compatible). Pip will happily install package B for you, which will upgrade package R to version 2. This will, at best, make package A completely unusable or, at worst, make it behave in undocumented and unpredictable ways.

The Python ecosystem has come up with a solution to the basic issues that arise from what is colloquially referred to as dependency hell. While far from perfect, it allows developers to sidestep many of the simplest package version dependency conflicts that can arise in web application development.

The virtualenv tool, of which a similar implementation is now a default module in Python 3.3 and named venv, is essential to ensure that you minimize your chances of ending up in dependency hell. The following quote is from the introduction in the official documentation for virtualenv:

It creates an environment that has its own installation directories, that doesn't share libraries with other virtualenv environments (and optionally doesn't access the globally installed libraries either).

More concisely, virtualenv allows you to create isolated environments for each one of your Python applications (or any Python code).

Note

The virtualenv tool does not, however, help you to manage the dependencies of the Python C-based extensions. For example, if you install the lxml package from pip, it will require that you have the correct libxml2 and libxslt system libraries and headers (which it will link against). The virtualenv tool will not help you isolate these system-level libraries.

Working with virtualenv

First, we need to make sure that we have the virtualenv tool installed in our local system. This is a simple matter of fetching it from the PyPI repository:

$ pip install virtualenv

Note

For obvious reasons, this package should be installed outside any virtual environments that may already exist.

Creating a new virtual environment

Creating a new virtual environment is straightforward. The following command will create a new folder at the specified path that will contain the necessary structure and scripts, including a full copy of your default Python binary:

$ virtualenv <path/to/env/directory>

If we want to create an environment that lives at ~/envs/testing, we will first ensure that the parent directory exists and then invoke the following command:

$ mkdir -p ~/envs
$ virtualenv ~/envs/testing

In Python 3.3+, a mostly API-compatible version of the virtualenv tool was added to the default language packages. The name of the module is venv, however, the name of the script that allows you to create a virtual environment is pyvenv and can be invoked in a similar way as the previously discussed virtualenv tool, as follows:

$ mkdir -p ~/envs
$ pyvenv ~/envs/testing

Activating and deactivating virtual environments

Creating a virtual environment does not automatically activate it. Once the environment is created, we need to activate it so that any modifications to the Python environment (for example, installing packages) will occur in the isolated environment instead of our system global one. By default, the activation of a virtual environment will alter the prompt string ($PS1) of the currently active user so that it displays the name of the sourced virtual environment:

$ source ~/envs/testing/bin/activate
(testing) $ # Command prompt modified to display current virtualenv

The command is the same for Python 3.3+:

$ source ~/envs/testing/bin/activate
(testing) $ # Command prompt modified to display current virtualenv

When you run the above command, the following series of steps occurs:

  1. Deactivates any already activated environment.
  2. Prepends your $PATH variable with the location of the virtualenv bin/ directory, for example, ~/envs/testing/bin:$PATH.
  3. Unsets $PYTHONHOME if it exists.
  4. Modifies your interactive shell prompt so that it includes the name of the currently active virtualenv.

As a result of the $PATH environment variable manipulations, the Python and pip binaries (and whatever other binaries that were installed via pip), which have been invoked via the shell where the environment was activated, will be the ones contained in ~/envs/testing/bin.

Adding packages to an existing environment

We can easily add packages to a virtual environment by simply activating it and then invoking pip in the following way:

$ source ~/envs/testing/bin/activate
(testing)$ pip install numpy

This will install the numpy package to the testing environment, and only the testing environment. Your global system packages will be unaffected, as well as any other existing environments.

Uninstalling packages from an existing environment

Uninstalling a pip package is straightforward as well:

$ source ~/envs/testing/bin/activate
(testing)$ pip uninstall numpy

This will remove the numpy package from the testing environment only.

Here is one relatively major place where the Python package management falls short: uninstalling a package does not uninstall its dependencies. For example, if you install package A and it installs dependent packages B and C, uninstalling package A at a later time will not uninstall B and C.

Simplifying common operations – using the virtualenvwrapper tool

A tool that I use frequently is virtualenvwrapper, which is a very small set of smart defaults and command aliases that makes working with virtual environments more intuitive. Let's install this to our global system now:

$ pip install virtualenvwrapper

Note

This will also install the virtualenv package as well in case it is not already present.

Next, you'll want to add the following lines to the end of your shell startup file. This is most likely ~/.bashrc, but in case you've changed your default shell to something else such as zsh, then it could be different (for example, ~/.zshrc):

export WORKON_HOME=$HOME/.virtualenvs
source /usr/local/bin/virtualenvwrapper.sh

The first line in the preceding code block indicates that new virtual environments that are created with virtualenvwrapper should be stored in $HOME/.virtualenvs. You can modify this as you see fit, but I generally leave this as a good default. I find that keeping all my virtual environments in the same hidden folder in my home directory reduces the amount of clutter in individual projects and makes it a bit more difficult to mistakenly add a whole virtual environment to version control.

Note

Adding an entire virtual environment to version control might seem like a good idea, but things are never as simple as they seem. The moment someone running a slightly (or completely) different operating system decides to download your project, which includes a full virtualenv folder that may contain packages with C modules that were compiled against your own architecture, they're going to have a hard time getting things to work.

Instead, a common pattern that is supported by pip and used by many developers is to freeze the current state of the installed packages in a virtual environment and save this to a requirements.txt file:

(testing) $ pip freeze > requirements.txt

This file may then be added to a version control system (VCS). As the intent of the file is to declare which dependencies are required for the application, and not provide them or indicate how they should be constructed, users of your project are then free to obtain the required packages in any way they so choose. Generally, they will install them via pip, which can handle a requirements file just fine:

(testing) $ pip install –r  requirements.txt

The second line adds a few convenient aliases to your current shell environment in order to create, activate, switch, and remove environments:

  • mkvirtualenv test: This will create an environment named test and activate it automatically.
  • mktmpenv test: This will create a temporary environment named test and activate it automatically. This environment will be destroyed once you invoke the deactivate script.
  • workon app: This will switch you to the app environment (already created).
  • workon (alias lsvirtualenv): When you don't specify an environment, this will print all the existing environments that are available.
  • deactivate: This will disable the currently active environment, if any.
  • rmvirtualenv app: This will completely remove the app environment.

We'll use the following command to create an environment to install our application packages:

$ mkvirtualenv app1

This will create a blank app1 environment and activate it. You should see an (app1) tag in your shell prompt.

Note

If you are using a shell other than Bash or ZSH, this environment tag may or may not appear. The way in which this works is that the script that is used to activate the virtual environment also modifies your current prompt string (the PS1 environment variable) so that it indicates the currently active virtualenv. As a result, there is a chance that this may not work if you're using a very special or non-standard shell configuration.

Summary

In this chapter, we looked at one of the most fundamental problems that any non-trivial Python application faces: library dependency management. Thankfully, the Python ecosystem has developed the widely adopted virtualenv tool for solving the most common subset of dependency problems that developers may encounter.

Additionally, we looked at a tool, virtualenvwrapper, that abstracted away some of the most common operations that one would perform with virtualenv. While we listed some of the functionalities that this package provided, the list of things that virtualenvwrapper can do is much more extensive. We only presented the very basics here, but more in-depth learning about what this tool can do is indispensable if you work with Python virtual environments all day long.

Left arrow icon Right arrow icon

Description

Flask is a small but powerful web development framework for Python. Though Flask is termed a micro-framework, it is no way lacking in functionality; there are many extensions available to Flask which helps it to function at the same level as other large frameworks such as Django and Ruby on Rails. This book will demonstrate how to develop a series of web application projects with the Python web micro-framework, and leverage extensions and external Python libraries and APIs to extend the development of a variety of larger and more complex web applications. The book will start by explaining Python’s Virtualenv library and how to create and switch between multiple virtual environments. You’ll first build an SQL database-backed application, which will use Flask-WTF, Flask-SQLAlchemy, Jinja templates, and other methods. Next you’ll move on to a timeline application, built using concepts including pytest-Flask, the Blinker package, data modelling for user timelines, exception handling, and creating and organizing CLI tools. Moving on, you’ll discover how to implement a photo timeline application where you’ll explore topics such as writing and running celery tasks, API error handling and testing, and Werkzeug middlewares. Finally, the book walks you through creating an application which fetches data from GitHub and stores it locally. You will also learn how to install and configure Flask-Click extension.

Who is this book for?

If you are a Python web developer who has developed basic Flask applications and now wants to build a series of more complex web applications, then this is the book for you.

What you will learn

  • Use the virtualenv Python package to effectively isolate your development environments
  • Convert a simple onefile Flask application into a more fullfledged multipackage application
  • Integrate FlaskLogin for simple user authentication, FlaskWTF for forms, and FlaskSQLAlchemy for database interactions
  • Explore URL routing and dispatching in a blueprint structured application
  • Create your own signals and consume them within your application
  • Learn to leverage Werkzeug, the WSGI library that powers much of Flask
  • Implement custom exceptions for handling non20x response codes
  • Write your own CLI tools for administrative and development tasks of your Flask application using FlaskScript/Click
  • Build your Flask extensions to encapsulate reusable behaviors across your applications
  • Integrate your application with open source JavaScriptbased graphing libraries to create simple data visualizations

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Nov 27, 2015
Length: 198 pages
Edition : 1st
Language : English
ISBN-13 : 9781784397340
Languages :
Tools :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Nov 27, 2015
Length: 198 pages
Edition : 1st
Language : English
ISBN-13 : 9781784397340
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 110.97
Learning Flask Framework
€36.99
Flask Blueprints
€36.99
Mastering Flask
€36.99
Total 110.97 Stars icon
Banner background image

Table of Contents

8 Chapters
1. Starting on the Right Foot – Using Virtualenv Chevron down icon Chevron up icon
2. Small to Big – Growing the Flask Application Structure Chevron down icon Chevron up icon
3. Snap – the Code Snippet Sharing Application Chevron down icon Chevron up icon
4. Socializer – the Testable Timeline Chevron down icon Chevron up icon
5. Shutterbug, the Photo Stream API Chevron down icon Chevron up icon
6. Hublot – Flask CLI Tools Chevron down icon Chevron up icon
7. Dinnerly – Recipe Sharing Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.3
(3 Ratings)
5 star 33.3%
4 star 0%
3 star 33.3%
2 star 33.3%
1 star 0%
Joseph Erskine Jun 07, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
One of the best programming books I’ve come across. I’ve read through Flask blogs (i.e. Flask-Mega Tutorial) and never felt like I had a good grasp on the framework. The authors provides a concise, in-depth look into Flask. Highly recommend if you want to get beyond the surface level.
Amazon Verified review Amazon
Kevin Aug 10, 2016
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
It needs a proper code review.It may sound harsh, but this reminded me of one of those projects you get hired on to fix something that never worked. When they show you the code, it's like the former guy just stopped working and left. I spent a few hours fixing problems and at page 50 threw in the towel. The point is to learn the framework, not debug the code.
Amazon Verified review Amazon
Roger Pence Feb 13, 2016
Full star icon Full star icon Empty star icon Empty star icon Empty star icon 2
This book continues Packt's grand tradition of poor tech reviews of the code presented. The code in the book, and the book's accompanying downloadable is wrong in several places. Note to self: only buy books where the code is on GitHub!All that said, the author taught me a couple of things and I'll give him another try--if he finds a better publisher.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.