Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Efficient Algorithm Design

You're reading from   Efficient Algorithm Design Unlock the power of algorithms to optimize computer programming

Arrow left icon
Product type Paperback
Published in Oct 2024
Publisher Packt
ISBN-13 9781835886823
Length 360 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Masoud Makrehchi Masoud Makrehchi
Author Profile Icon Masoud Makrehchi
Masoud Makrehchi
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Foundations of Algorithm Analysis
2. Chapter 1: Introduction to Algorithm Analysis FREE CHAPTER 3. Chapter 2: Mathematical Induction and Loop Invariant for Algorithm Correctness 4. Chapter 3: Rate of Growth for Complexity Analysis 5. Chapter 4: Recursion and Recurrence Functions 6. Chapter 5: Solving Recurrence Functions 7. Part 2: Deep Dive in Algorithms
8. Chapter 6: Sorting Algorithms 9. Chapter 7: Search Algorithms 10. Chapter 8: Symbiotic Relationship between Sort and Search 11. Chapter 9: Randomized Algorithms 12. Chapter 10: Dynamic Programming 13. Part 3: Fundamental Data Structures
14. Chapter 11: Landscape of Data Structures 15. Chapter 12: Linear Data Structures 16. Chapter 13: Non-Linear Data Structures 17. Part 4: Next Steps
18. Chapter 14: Tomorrow’s Algorithms 19. Index 20. Other Books You May Enjoy

Case studies

At the beginning of this chapter, we introduced three problems faced by Tom and Fang. These problems involve randomized algorithms and probabilistic reasoning and can be solved using the optimal stopping theory. Essentially, these problems focus on determining when to stop searching rather than what to search for. As case studies, we will analyze and solve these problems in detail, applying the concepts we have learned in this chapter.

Optimal selection in an online dating app

A new online dating app, Matcher, has been designed to help users find their best possible partners. The app operates similarly to a game, where users are presented with one potential match at a time, selected randomly from a pool of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>N</mml:mi></mml:math> potential matches (the total number of matches is unknown to the users). Tom, our user, has a maximum of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>n</mml:mi></mml:math> likes available (where<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>n</mi><mo>≪</mo><mi>N</mi></mrow></mrow></math>). His goal is to maximize his chances of finding the best possible matches using his limited likes.

When Tom opens the Matcher app...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime