Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Distributed Data Systems with Azure Databricks

You're reading from   Distributed Data Systems with Azure Databricks Create, deploy, and manage enterprise data pipelines

Arrow left icon
Product type Paperback
Published in May 2021
Publisher Packt
ISBN-13 9781838647216
Length 414 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Alan Bernardo Palacio Alan Bernardo Palacio
Author Profile Icon Alan Bernardo Palacio
Alan Bernardo Palacio
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Introducing Databricks
2. Chapter 1: Introduction to Azure Databricks FREE CHAPTER 3. Chapter 2: Creating an Azure Databricks Workspace 4. Section 2: Data Pipelines with Databricks
5. Chapter 3: Creating ETL Operations with Azure Databricks 6. Chapter 4: Delta Lake with Azure Databricks 7. Chapter 5: Introducing Delta Engine 8. Chapter 6: Introducing Structured Streaming 9. Section 3: Machine and Deep Learning with Databricks
10. Chapter 7: Using Python Libraries in Azure Databricks 11. Chapter 8: Databricks Runtime for Machine Learning 12. Chapter 9: Databricks Runtime for Deep Learning 13. Chapter 10: Model Tracking and Tuning in Azure Databricks 14. Chapter 11: Managing and Serving Models with MLflow and MLeap 15. Chapter 12: Distributed Deep Learning in Azure Databricks 16. Other Books You May Enjoy

Exploring authentication and authorization

Azure Databricks allows the user to perform access control to manage access to workspace objects, clusters, pools, and data tables. Admin users manage access control lists and also users with delegated permissions.

Clustering access control

By default, in Azure Databricks, all users can create or modify clusters. Before using cluster access control, an admin user must enable it. After this, there are two types of cluster permissions, which are as follows:

  • The Allow Cluster Creation permission allows the creation of clusters.
  • Cluster-level permissions allow you to manage clusters.

When cluster access control is enabled, only admins and users with Can Manage permissions can configure, create, terminate, or delete clusters.

Configuring cluster permissions

Cluster access control can be configured by clicking on the cluster button in the sidebar and, in the Actions options, selecting the Permissions button. This will prompt a permission dialog box where users can do the following:

  • Apply granular access control to users and groups using the Add Users and Groups options.
  • Manage granted access for users and groups.

These options are visible in Figure 1.39:

Figure 1.39 – Managing cluster permissions

Figure 1.39 – Managing cluster permissions

Cluster permissions allow us to enforce fine-grained control over the computational resources used in our projects.

Folder permissions

Folders have five levels of permissions: No Permissions, Read, Run, Edit, and Manage. Any notebook or experiment will inherit the folder permissions that contain them.

Default folder permissions

Besides the current access control, these permissions are maintained:

  • Objects in the Shared folder can be managed by anyone.
  • Users can manage objects created by themselves.

When there is no workspace access control, users can only edit items in their Workspace folder.

With workspace access control enabled, the following permissions exist:

  • Only admins can create items in the Workspace folder, but users can manage existing items.
  • Permissions applied to a folder will be applied to the items it contains.
  • Users keep having Manage permission to their home directories.

Understanding these permissions helps us to know in advance how possible changes in these policies could affect how users interact with the organization's data.

Notebook permissions

Notebooks have the same five permission levels as folders: No Permissions, Read, Run, Edit, and Manage.

Configuring notebook and folder permissions

Users can configure notebook permissions by clicking on the Permissions button in the notebook context bar. Select the folder and then click on Permissions from the drop-down menu:

Figure 1.40 – Notebook permissions

Figure 1.40 – Notebook permissions

From there, you can grant permissions to users or groups as well as edit existing permissions:

Figure 1.41 – Access control on notebooks

Figure 1.41 – Access control on notebooks

Access control on notebooks can easily be applied in this way by selecting one of the options from the drop-down menu.

MLflow Model permissions

You can assign six permission levels to MLflow Models registered in the MLflow Model Registry: No Permissions, Read, Edit, Manage Staging Versions, Manage Production Versions, and Manage.

Default MLflow Model permissions

Besides the current workspace access control, these permissions are maintained:

  • Models in the registry can be created by anyone.
  • Administrators can manage any model in the registry.

When there is no workspace access control, users can manage any of the models in the registry.

With workspace access control enabled, the following permissions exist:

  • Users can manage only the models they have created.
  • Only administrators can manage models created by other users.

These options are applied to MLflow Models created in Azure Databricks.

Configuring MLflow Model permissions

One thing to keep in mind is that only administrators belong to the admins with the Manage permissions group, while the rest of the users belong to the all users group.

MLflow Model permissions can be modified by clicking on the model's icon in the sidebar, selecting the model name, clicking on the drop-down icon to the right of the model name, and finally selecting Permissions. This will show us a dialog box from which we can select specific users or groups and add specific permissions:

Figure 1.42 – MLflow permissions

Figure 1.42 – MLflow permissions

You can update the permissions of a user or group by selecting the new permission from the Permission drop-down menu:

Figure 1.43 – MLflow access management

Figure 1.43 – MLflow access management

By selecting one of these options, we can control how MLflow experiments interact with our data and which users can create models that work with it.

You have been reading a chapter from
Distributed Data Systems with Azure Databricks
Published in: May 2021
Publisher: Packt
ISBN-13: 9781838647216
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime