Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Artificial Intelligence for Big Data

You're reading from   Artificial Intelligence for Big Data Complete guide to automating Big Data solutions using Artificial Intelligence techniques

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788472173
Length 384 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Anand Deshpande Anand Deshpande
Author Profile Icon Anand Deshpande
Anand Deshpande
Manish Kumar Manish Kumar
Author Profile Icon Manish Kumar
Manish Kumar
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Big Data and Artificial Intelligence Systems FREE CHAPTER 2. Ontology for Big Data 3. Learning from Big Data 4. Neural Network for Big Data 5. Deep Big Data Analytics 6. Natural Language Processing 7. Fuzzy Systems 8. Genetic Programming 9. Swarm Intelligence 10. Reinforcement Learning 11. Cyber Security 12. Cognitive Computing 13. Other Books You May Enjoy

Summary

In this chapter, we have explored one of the most important machine learning techniques, RL. We understood the difference between RL and supervised learning. Learning based on behavioral reinforcement for the agent is extremely critical in modeling the intelligent machines that will bridge the gap between human capabilities and the intelligent machines. We have seen the basic concepts of the RL algorithm along with the participating components. We have also tried to establish mathematical equations for a generic RL algorithm where the overall goal is to maximize cumulative rewards for the agent as it transitions through various states with every action.

We have briefly tried to understand the MDPs in a deterministic and stochastic environment. We also explored dynamic programming concepts in brief along with Q-learning and SARSA learning algorithms. In the end, we briefly...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime