Chapter 1: Architecting High-Performance Embedded Systems
This chapter introduces the elements of embedded system architectures and discusses some key system features that are common across a wide variety of embedded applications. An embedded system generally includes at least one microcontroller or microprocessor, sensors, actuators, a power source, and, in many cases, one or more network interfaces. The chapter continues with an exploration of the relationship between embedded systems and the Internet of Things (IoT).
This chapter emphasizes the necessity for many types of embedded systems to function in a real-time manner and presents the basic embedded system operating sequence of reading from input devices, computing outputs, and updating output devices in a repetitive manner while remaining synchronized with the passage of time.
The chapter concludes with an introduction to digital logic and the Field-Programmable Gate Array (FPGA), and identifies the design space within the spectrum of embedded systems most appropriately addressed by these high-performance devices.
After completing this chapter, you will have a broad understanding of the components that make up embedded systems and the relationship of embedded systems to the IoT. You will know why many embedded systems must operate in synchronization with real time and will understand the basic structure of FPGAs and how they can be employed to implement high-performance embedded systems.
We will cover the following topics in this chapter:
- Elements of embedded systems
- The Internet of Things
- Operating in real time
- FPGAs in embedded systems