Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applying Math with Python

You're reading from   Applying Math with Python Practical recipes for solving computational math problems using Python programming and its libraries

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781838989750
Length 358 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Sam Morley Sam Morley
Author Profile Icon Sam Morley
Sam Morley
Sam Morley Sam Morley
Author Profile Icon Sam Morley
Sam Morley
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Basic Packages, Functions, and Concepts 2. Mathematical Plotting with Matplotlib FREE CHAPTER 3. Calculus and Differential Equations 4. Working with Randomness and Probability 5. Working with Trees and Networks 6. Working with Data and Statistics 7. Regression and Forecasting 8. Geometric Problems 9. Finding Optimal Solutions 10. Miscellaneous Topics 11. Other Books You May Enjoy

To get the most out of this book

The only requirement throughout this book is a recent version of Python, at least Python 3.6, but a higher version is preferable. Some readers might prefer to use the Anaconda distribution of Python, which comes with many of the packages and tools required in this book. If this is the case, you should use the conda package manager to install the packages. Python is supported on all major operating systems – Windows, macOS, and Linux – and on many platforms. The following table covers the main libraries and their versions used at the time of writing this book:

Software/libraries covered in the book

Version

Chapter

Python

3.6 or higher

All

NumPy

1.18.3

All

SciPy

1.4.1

All

Matplotlib

3.2.1

All

Pandas

1.0.3

6 - 10

Bokeh

2.1.0

6

Scikit-Learn

0.22.1

7

Dask

2.18.1

10

Apache Kafka

2.5.0

10

If you are using the digital version of this book, we advise you to type the code yourself or access the code via the GitHub repository (link available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

Some readers may prefer to work through the code samples in this book in a Jupyter notebook rather than in a simple Python file. There are one or two places in this book where you may need to repeat plotting commands. These places are marked in the instructions.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image