Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Unsupervised Learning Workshop

You're reading from   The Unsupervised Learning Workshop Get started with unsupervised learning algorithms and simplify your unorganized data to help make future predictions

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781800200708
Length 550 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Christopher Kruger Christopher Kruger
Author Profile Icon Christopher Kruger
Christopher Kruger
Aaron Jones Aaron Jones
Author Profile Icon Aaron Jones
Aaron Jones
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface
1. Introduction to Clustering 2. Hierarchical Clustering FREE CHAPTER 3. Neighborhood Approaches and DBSCAN 4. Dimensionality Reduction Techniques and PCA 5. Autoencoders 6. t-Distributed Stochastic Neighbor Embedding 7. Topic Modeling 8. Market Basket Analysis 9. Hotspot Analysis Appendix

Introduction to Hierarchical Clustering

So far, we have shown you that hierarchies can be excellent structures to organize information that clearly shows nested relationships among data points. While this helps us gain an understanding of the parent/child relationships between items, it can also be very handy when forming clusters. Expanding on the animal example in the previous section, imagine that you were simply presented with two features of animals: their height (measured from the tip of the nose to the end of the tail) and their weight. Using this information, you then have to recreate a hierarchical structure in order to identify which records in your dataset correspond to dogs and cats, as well as their relative subspecies.

Since you are only given animal heights and weights, you won't be able to deduce the specific names of each species. However, by analyzing the features that you have been provided with, you can develop a structure within the data that serves as...

You have been reading a chapter from
The Unsupervised Learning Workshop
Published in: Jul 2020
Publisher: Packt
ISBN-13: 9781800200708
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £16.99/month. Cancel anytime