Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Statistics and Machine Learning with R Workshop

You're reading from   The Statistics and Machine Learning with R Workshop Unlock the power of efficient data science modeling with this hands-on guide

Arrow left icon
Product type Paperback
Published in Oct 2023
Publisher Packt
ISBN-13 9781803240305
Length 516 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Liu Peng Liu Peng
Author Profile Icon Liu Peng
Liu Peng
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1:Statistics Essentials
2. Chapter 1: Getting Started with R FREE CHAPTER 3. Chapter 2: Data Processing with dplyr 4. Chapter 3: Intermediate Data Processing 5. Chapter 4: Data Visualization with ggplot2 6. Chapter 5: Exploratory Data Analysis 7. Chapter 6: Effective Reporting with R Markdown 8. Part 2:Fundamentals of Linear Algebra and Calculus in R
9. Chapter 7: Linear Algebra in R 10. Chapter 8: Intermediate Linear Algebra in R 11. Chapter 9: Calculus in R 12. Part 3:Fundamentals of Mathematical Statistics in R
13. Chapter 10: Probability Basics 14. Chapter 11: Statistical Estimation 15. Chapter 12: Linear Regression in R 16. Chapter 13: Logistic Regression in R 17. Chapter 14: Bayesian Statistics 18. Index 19. Other Books You May Enjoy

Linear Regression in R

In this chapter, we will introduce linear regression, a fundamental statistical approach that’s used to model the relationship between a target variable and multiple explanatory (also called independent) variables. We will cover the basics of linear regression, starting with simple linear regression and then extending the concepts to multiple linear regression. We will learn how to estimate the model coefficients, evaluate the goodness of fit, and test the significance of the coefficients using hypothesis testing. Additionally, we will discuss the assumptions underlying linear regression and explore techniques to address potential issues, such as nonlinearity, interaction effect, multicollinearity, and heteroskedasticity. We will also introduce two widely used regularization techniques: the ridge and Least Absolute Shrinkage and Selection Operator (lasso) penalties.

By the end of this chapter, you will learn the core principles of linear regression...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £16.99/month. Cancel anytime