Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Data Analysis Workshop

You're reading from   The Data Analysis Workshop Solve business problems with state-of-the-art data analysis models, developing expert data analysis skills along the way

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781839211386
Length 626 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Konstantin Palagachev Konstantin Palagachev
Author Profile Icon Konstantin Palagachev
Konstantin Palagachev
Gururajan Govindan Gururajan Govindan
Author Profile Icon Gururajan Govindan
Gururajan Govindan
Shubhangi Hora Shubhangi Hora
Author Profile Icon Shubhangi Hora
Shubhangi Hora
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface
1. Bike Sharing Analysis 2. Absenteeism at Work FREE CHAPTER 3. Analyzing Bank Marketing Campaign Data 4. Tackling Company Bankruptcy 5. Analyzing the Online Shopper's Purchasing Intention 6. Analysis of Credit Card Defaulters 7. Analyzing the Heart Disease Dataset 8. Analyzing Online Retail II Dataset 9. Analysis of the Energy Consumed by Appliances 10. Analyzing Air Quality Appendix

Initial Analysis of the Reason for Absence

Let's start with a simple analysis of the Reason for absence column. We will try to address questions such as, what is the most common reason for absence? Does being a drinker or smoker have some effect on the causes? Does the distance to work have some effect on the reasons? And so on. Starting with these types of questions is often important when performing data analysis, as this is a good way to obtain confidence and understanding of the data.

The first thing we are interested in is the overall distribution of the absence reasons in the data—that is, how many entries we have for a specific reason for absence in our dataset. We can easily address this question by using the countplot() function from the seaborn package:

# get the number of entries for each reason for absence
plt.figure(figsize=(10, 5))
ax = sns.countplot(data=preprocessed_data, x="Reason for absence")
ax.set_ylabel("Number of entries per...
You have been reading a chapter from
The Data Analysis Workshop
Published in: Jul 2020
Publisher: Packt
ISBN-13: 9781839211386
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image