Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Smarter Decisions - The Intersection of Internet of Things and Decision Science

You're reading from   Smarter Decisions - The Intersection of Internet of Things and Decision Science A comprehensive guide for solving IoT business problems using decision science

Arrow left icon
Product type Paperback
Published in Jul 2016
Publisher Packt
ISBN-13 9781785884191
Length 392 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Jojo Moolayil Jojo Moolayil
Author Profile Icon Jojo Moolayil
Jojo Moolayil
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. IoT and Decision Science FREE CHAPTER 2. Studying the IoT Problem Universe and Designing a Use Case 3. The What and Why - Using Exploratory Decision Science for IoT 4. Experimenting Predictive Analytics for IoT 5. Enhancing Predictive Analytics with Machine Learning for IoT 6. Fast track Decision Science with IoT 7. Prescriptive Science and Decision Making 8. Disruptions in IoT 9. A Promising Future with IoT

Studying relationships

The end result of the produce from the manufacturing plant is whether it can be accepted as a good quality product or discarded due to bad quality. This status for each manufacturing exercise is identified in the data using the 'Detergent_Quality' dimension, which is calculated using some weighted algorithm by taking into account the four output quality parameters of the end detergent produced. Our end goal is to find out the reasons why the final product was not accepted, which shows that we need to study why the output quality was bad. The reasons could be many, but how do we identify them? This is when the task of studying relationships is presented to the decision scientist. We have with us plenty of independent variables that are either continuous or categorical. Trying to understand how these independent dimensions eventually contribute to the end output is where we start studying the relationship between them. The entire exercise can be simply defined...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image