Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
SAS for Finance

You're reading from   SAS for Finance Forecasting and data analysis techniques with real-world examples to build powerful financial models

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788624565
Length 306 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Harish Gulati Harish Gulati
Author Profile Icon Harish Gulati
Harish Gulati
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Time Series Modeling in the Financial Industry 2. Forecasting Stock Prices and Portfolio Decisions using Time Series FREE CHAPTER 3. Credit Risk Management 4. Budget and Demand Forecasting 5. Inflation Forecasting for Financial Planning 6. Managing Customer Loyalty Using Time Series Data 7. Transforming Time Series – Market Basket and Clustering 8. Other Books You May Enjoy

Time Series Modeling in the Financial Industry

A space center is monitoring the weather pattern to schedule a departure time for its latest Martian explorer. An economist is readying his gross domestic product (GDP) forecasts to be used by equity traders, who are eager to know if we had a quarter of growth or another economic contraction. In both cases, they are relying on time series data. In the former instance to forecast a weather event, and in the latter to determine which direction GDP forecasts are headed. So, what do we mean by time series?

A series can be defined as a number of events, objects, or people of a similar or related kind coming one after another; if we add the dimension of time, we get a time series. A time series can be defined as a series of data points in time order. For example, the space center will use data from the last few years to predict the weather pattern. The data collection would have started a few years ago and subsequent data points would have given rise to an order in which data was been collected. Another aspect of the data that we usually observe is periodicity. For example, weather data would usually be collected daily, if not hourly. The periodicity of time series data is a slow-moving dimension as it seldom changes. The periodicity of recording observations is broadly driven by three factors, which are relevance, behavior driven, and purpose. In the case of weather patterns, we probably need to know how the weather will change over the course of the day. The point of sales (POS) data from debit card transactions of an individual will be recorded every time there is usage. GDP data, however, is usually aggregated in a time series format every quarter, as these numbers are usually reported on a quarterly basis by central banks or related institutions.

In this chapter, we will explore the following topics:

  • Time series illustration
  • The importance of time series
  • Forecasting across industries
  • Characteristics of time series data
  • Challenges in data
  • Good versus bad forecasts
  • The use of time series in the financial industry
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £16.99/month. Cancel anytime