Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Reproducible Data Science with Pachyderm

You're reading from   Reproducible Data Science with Pachyderm Learn how to build version-controlled, end-to-end data pipelines using Pachyderm 2.0

Arrow left icon
Product type Paperback
Published in Mar 2022
Publisher Packt
ISBN-13 9781801074483
Length 364 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Svetlana Karslioglu Svetlana Karslioglu
Author Profile Icon Svetlana Karslioglu
Svetlana Karslioglu
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Introduction to Pachyderm and Reproducible Data Science
2. Chapter 1: The Problem of Data Reproducibility FREE CHAPTER 3. Chapter 2: Pachyderm Basics 4. Chapter 3: Pachyderm Pipeline Specification 5. Section 2:Getting Started with Pachyderm
6. Chapter 4: Installing Pachyderm Locally 7. Chapter 5: Installing Pachyderm on a Cloud Platform 8. Chapter 6: Creating Your First Pipeline 9. Chapter 7: Pachyderm Operations 10. Chapter 8: Creating an End-to-End Machine Learning Workflow 11. Chapter 9: Distributed Hyperparameter Tuning with Pachyderm 12. Section 3:Pachyderm Clients and Tools
13. Chapter 10: Pachyderm Language Clients 14. Chapter 11: Using Pachyderm Notebooks 15. Other Books You May Enjoy

Summary

In this chapter, we have learned how to implement an ML pipeline that performs hyperparameter tuning on a house price prediction example. We've created five steps of this pipeline, each outputting relevant files and information into Pachyderm output repositories. In our first pipeline, we performed an exploratory analysis to gather a general understanding of the dataset and built a heatmap that helped us outline the correlation between various parameters in our dataset. In our second pipeline, we cleaned the data of columns with missing information, as well as removed parameters that have little influence on the sale price of a house. In our third pipeline, we removed outliers—values that were outside of the standard range. Our fourth pipeline split our dataset into two parts—one for testing and the other for training. And finally, our fifth pipeline performed hyperparameter tuning for the alpha parameter and found the best alpha for our use case. The last...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image