Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
R Machine Learning By Example

You're reading from   R Machine Learning By Example Understand the fundamentals of machine learning with R and build your own dynamic algorithms to tackle complicated real-world problems successfully

Arrow left icon
Product type Paperback
Published in Mar 2016
Publisher
ISBN-13 9781784390846
Length 340 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Raghav Bali Raghav Bali
Author Profile Icon Raghav Bali
Raghav Bali
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Getting Started with R and Machine Learning FREE CHAPTER 2. Let's Help Machines Learn 3. Predicting Customer Shopping Trends with Market Basket Analysis 4. Building a Product Recommendation System 5. Credit Risk Detection and Prediction – Descriptive Analytics 6. Credit Risk Detection and Prediction – Predictive Analytics 7. Social Media Analysis – Analyzing Twitter Data 8. Sentiment Analysis of Twitter Data Index

Working with functions

Next up, we will be looking at functions, which is a technique or methodology to easily structure and modularize your code, specifically lines of code which perform specific tasks, so that you can execute them whenever you need them without writing them again and again. In R, functions are basically treated as just another data type and you can assign functions, manipulate them as and when needed, and also pass them as arguments to other functions. We will be exploring all this in the following section.

Built-in functions

R consists of several functions which are available in the R-base package and, as you install more packages, you get more functionality, which is made available in the form of functions. We will look at a few built-in functions in the following examples:

> sqrt(5)
[1] 2.236068
> sqrt(c(1,2,3,4,5,6,7,8,9,10))
[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751     [8] 2.828427 3.000000 3.162278
> # aggregating functions
> mean(c(1,2,3,4,5,6,7,8,9,10))
[1] 5.5
> median(c(1,2,3,4,5,6,7,8,9,10))
[1] 5.5

You can see from the preceding examples that functions such as mean, median, and sqrt are built-in and can be used anytime when you start R, without loading any other packages or defining the functions explicitly.

User-defined functions

The real power lies in the ability to define your own functions based on different operations and computations you want to perform on the data and making R execute those functions just in the way you intend them to work. Some illustrations are shown as follows:

square <- function(data){
  return (data^2)
}
> square(5)
[1] 25
> square(c(1,2,3,4,5))
[1]  1  4  9 16 25
point <- function(xval, yval){
  return (c(x=xval,y=yval))
}
> p1 <- point(5,6)
> p2 <- point(2,3)
> 
> p1
x y 
5 6 
> p2
x y 
2 3

As we saw in the previous code snippet, we can define functions such as square which computes the square of a single number or even a vector of numbers using the same code. Functions such as point are useful to represent specific entities which represent points in the two-dimensional co-ordinate space. Now we will be looking at how to use the preceding functions together.

Passing functions as arguments

When you define any function, you can also pass other functions to it as arguments if you intend to use them inside your function to perform some complex computations. This reduces the complexity and redundancy of the code. The following example computes the Euclidean distance between two points using the square function defined earlier, which is passed as an argument:

> # defining the function
euclidean.distance <- function(point1, point2, square.func){
  distance <- sqrt(
                  as.integer(
                    square.func(point1['x'] - point2['x'])
                  ) +
                  as.integer(
                    square.func(point1['y'] - point2['y'])
                  )
              )
  return (c(distance=distance))
}
> # executing the function, passing square as argument
> euclidean.distance(point1 = p1, point2 = p2, square.func = square)
distance 
4.242641 
> euclidean.distance(point1 = p2, point2 = p1, square.func = square)
distance 
4.242641 
> euclidean.distance(point1 = point(10, 3), point2 = point(-4, 8), square.func = square)
distance
14.86607

Thus, you can see that with functions you can define a specific function once and execute it as many times as you need.

You have been reading a chapter from
R Machine Learning By Example
Published in: Mar 2016
Publisher:
ISBN-13: 9781784390846
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image