Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python for Finance Cookbook – Second Edition

You're reading from   Python for Finance Cookbook – Second Edition Over 80 powerful recipes for effective financial data analysis

Arrow left icon
Product type Paperback
Published in Dec 2022
Publisher Packt
ISBN-13 9781803243191
Length 740 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Eryk Lewinson Eryk Lewinson
Author Profile Icon Eryk Lewinson
Eryk Lewinson
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Acquiring Financial Data FREE CHAPTER 2. Data Preprocessing 3. Visualizing Financial Time Series 4. Exploring Financial Time Series Data 5. Technical Analysis and Building Interactive Dashboards 6. Time Series Analysis and Forecasting 7. Machine Learning-Based Approaches to Time Series Forecasting 8. Multi-Factor Models 9. Modeling Volatility with GARCH Class Models 10. Monte Carlo Simulations in Finance 11. Asset Allocation 12. Backtesting Trading Strategies 13. Applied Machine Learning: Identifying Credit Default 14. Advanced Concepts for Machine Learning Projects 15. Deep Learning in Finance 16. Other Books You May Enjoy
17. Index

Modeling Volatility with GARCH Class Models

In Chapter 6, Time Series Analysis and Forecasting, we looked at various approaches to modeling time series. However, models such as ARIMA (Autoregressive Integrated Moving Average) cannot account for volatility that is not constant over time (heteroskedastic). We have already explained that some transformations (such as log or Box-Cox transformations) can be used to adjust for modest changes in volatility, but we would like to go a step further and model it.

In this chapter, we focus on conditional heteroskedasticity, which is a phenomenon caused when an increase in volatility is correlated with a further increase in volatility. An example might help to understand this concept. Imagine the price of an asset going down significantly due to some breaking news related to the company. Such a sudden price drop could trigger certain risk management tools of investment funds, which start selling the stocks as a result of the previous decrease...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image