Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Deep Learning Projects

You're reading from   Python Deep Learning Projects 9 projects demystifying neural network and deep learning models for building intelligent systems

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781788997096
Length 472 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Rahul Kumar Rahul Kumar
Author Profile Icon Rahul Kumar
Rahul Kumar
Matthew Lamons Matthew Lamons
Author Profile Icon Matthew Lamons
Matthew Lamons
Abhishek Nagaraja Abhishek Nagaraja
Author Profile Icon Abhishek Nagaraja
Abhishek Nagaraja
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Building Deep Learning Environments 2. Training NN for Prediction Using Regression FREE CHAPTER 3. Word Representation Using word2vec 4. Building an NLP Pipeline for Building Chatbots 5. Sequence-to-Sequence Models for Building Chatbots 6. Generative Language Model for Content Creation 7. Building Speech Recognition with DeepSpeech2 8. Handwritten Digits Classification Using ConvNets 9. Object Detection Using OpenCV and TensorFlow 10. Building Face Recognition Using FaceNet 11. Automated Image Captioning 12. Pose Estimation on 3D models Using ConvNets 13. Image Translation Using GANs for Style Transfer 14. Develop an Autonomous Agent with Deep R Learning 15. Summary and Next Steps in Your Deep Learning Career 16. Other Books You May Enjoy

Setting up a DL environment in the cloud

All the steps we performed up to now remain the same for the cloud as well, but there are a few additional modules required to configure the cloud virtual machines to make your DL applications servable and scalable. So, before setting up your server, follow the instructions from the preceding section.

To deploy your DL applications in the cloud, you will need a server good enough to train your models and serve at the same time. With huge development in the sphere of DL, the need for cloud servers to practice and deploy projects has increased drastically, and so have the options on the market. The following is a list of some of the best options on offer:

All of these options have their own pro and cons, and the final choice totally depends on your use case and preferences, so feel free to explore more. In this book, we will build and deploy our models mostly on Google Compute Engine (GCE), which is a part of Google Cloud Platform (GCP). Follow the steps mentioned in this chapter to spin up a VM server and get started.

Google has released an internal notebook platform, Google Colab (https://colab.research.google.com/), which is pre-installed with all the DL packages and other Python libraries. You can write all of your ML/DL applications on the Google Cloud, leveraging free GPUs for 10 hours.
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £16.99/month. Cancel anytime