Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Cleaning Cookbook

You're reading from   Python Data Cleaning Cookbook Prepare your data for analysis with pandas, NumPy, Matplotlib, scikit-learn, and OpenAI

Arrow left icon
Product type Paperback
Published in May 2024
Publisher Packt
ISBN-13 9781803239873
Length 486 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Michael Walker Michael Walker
Author Profile Icon Michael Walker
Michael Walker
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Anticipating Data Cleaning Issues When Importing Tabular Data with pandas 2. Anticipating Data Cleaning Issues When Working with HTML, JSON, and Spark Data FREE CHAPTER 3. Taking the Measure of Your Data 4. Identifying Outliers in Subsets of Data 5. Using Visualizations for the Identification of Unexpected Values 6. Cleaning and Exploring Data with Series Operations 7. Identifying and Fixing Missing Values 8. Encoding, Transforming, and Scaling Features 9. Fixing Messy Data When Aggregating 10. Addressing Data Issues When Combining DataFrames 11. Tidying and Reshaping Data 12. Automate Data Cleaning with User-Defined Functions, Classes, and Pipelines 13. Index

Classes that handle non-tabular data structures

Data scientists increasingly receive non-tabular data, often in the form of JSON or XML files. The flexibility of JSON and XML allows organizations to capture complicated relationships between data items in one file. A one-to-many relationship stored in two tables in an enterprise data system can be represented well in JSON by a parent node for the one side and child nodes for data on the many side.

When we receive JSON data we often start by trying to normalize it. Indeed, we do that in a couple of recipes in this book. We try to recover the one-to-one and one-to-many relationships in the data obfuscated by the flexibility of JSON. But there is another way to work with such data, one that has many advantages.

Instead of normalizing the data, we can create a class that instantiates objects at the appropriate unit of analysis, and use the methods of the class to navigate the many side of one-to-many relationships. For example...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £16.99/month. Cancel anytime