Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Analysis

You're reading from   Python Data Analysis Learn how to apply powerful data analysis techniques with popular open source Python modules

Arrow left icon
Product type Paperback
Published in Oct 2014
Publisher
ISBN-13 9781783553358
Length 348 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Getting Started with Python Libraries FREE CHAPTER 2. NumPy Arrays 3. Statistics and Linear Algebra 4. pandas Primer 5. Retrieving, Processing, and Storing Data 6. Data Visualization 7. Signal Processing and Time Series 8. Working with Databases 9. Analyzing Textual Data and Social Media 10. Predictive Analytics and Machine Learning 11. Environments Outside the Python Ecosystem and Cloud Computing 12. Performance Tuning, Profiling, and Concurrency A. Key Concepts
B. Useful Functions C. Online Resources
Index

Creating a process pool with multiprocessing

Multiprocessing is a standard Python module that targets machines with multiple processors. Multiprocessing works around the Global Interpreter Lock (GIL) by creating multiple processes.

Note

The GIL locks Python bytecode so that only one thread can access it.

Multiprocessing supports process pools, queues, and pipes. A process pool is a pool of system processes that can execute a function in parallel. Queues are data structures that are usually used to store tasks. Pipes connect different processes in such a way that the output of one process becomes the input of another.

Note

Windows doesn't have an os.fork() function, so we need to make sure that outside the if __name__ == "__main__" block only imports and def blocks are defined.

Create a pool and register a function as follows:

   p = mp.Pool(nprocs)

The pool has a map() method that is the parallel equivalent of the Python map() function:

p.map(simulate, [i for i in xrange(10, 50)]...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £16.99/month. Cancel anytime