Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Practical Network Automation

You're reading from   Practical Network Automation A beginner's guide to automating and optimizing networks using Python, Ansible, and more

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789955651
Length 226 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Abhishek Ratan Abhishek Ratan
Author Profile Icon Abhishek Ratan
Abhishek Ratan
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Fundamental Concepts of Network Automation FREE CHAPTER 2. Python Automation for Network Engineers 3. Ansible and Network Templatizations 4. Using Artificial Intelligence in Operations 5. Web Framework for Automation Triggers 6. Continual Integration 7. Assessment 8. Other Books You May Enjoy

Making a decision (Python or PowerShell)

There are times when, as an automation engineer, we might have to choose between PowerShell and Python for certain tasks. Python is extensively used for interaction with infrastructure devices, Network Gear, and multiple vendors, but to have deep integration into and accessibility on any Windows platform, PowerShell will be the best choice. Python is extensively used in Linux environments, where PowerShell has a very limited support. PowerShell comes pre-installed in every flavor of Windows, but a major updated version (PowerShell 5.0) is available from Windows 10 onward.

PowerShell also has its own built-in libraries to support various tasks, like Python, has an extensive support community and backing from Microsoft, which adds new enhancements regularly.

Let's look at a couple of examples of PowerShell to help us understand how to write a PowerShell code.

API access

Here, we call the weather API to get coordinates for a particular location (say London, England):

#use the city of london as a reference
$city="london"
$urlx="https://samples.openweathermap.org/data/2.5/weather?q="+$city+"&appid=b6907d289e10d714a6e88b30761fae22"
# used to Invoke API using GET method
$stuff = Invoke-RestMethod -Uri $urlx -Method Get
#write raw json
$stuff
#write the output of latitude and longitude
write-host ("Longitude: "+$stuff.coord.lon+" , "+"Latitude: "+$stuff.coord.lat)

The output is as follows:

PS C:\Users\abhishek.ratan> C:\gdrive\book2\github\edition2\chapter1\api_invoke_ps.ps1
coord : @{lon=-0.13; lat=51.51}
weather : {@{id=300; main=Drizzle; description=light intensity drizzle; icon=09d}}
base : stations
main : @{temp=280.32; pressure=1012; humidity=81; temp_min=279.15; temp_max=281.15}
visibility : 10000
wind : @{speed=4.1; deg=80}
clouds : @{all=90}
dt : 1485789600
sys : @{type=1; id=5091; message=0.0103; country=GB; sunrise=1485762037; sunset=1485794875}
id : 2643743
name : London
cod : 200
Longitude: -0.13 , Latitude: 51.51

As we can see in the code, a major difference between writing code in Python and PowerShell is that in PowerShell we do not need to focus on indentation. PowerShell does not care about indentation, whereas a Python compilation would fail if strict indentation was not adhered to.

Also, we do not need to import any specific library in PowerShell, as it has very extensive built-in functions that are directly callable from the script.

Interacting with local machines

As mentioned earlier, PowerShell is deeply integrated with Windows at all levels. Let's look at an example of certain processes (system or PowerShell processes from Microsoft), running locally on the Windows machine:

Get-Process `
| Where-Object {$_.company -like ‘*Microsoft*’}`
| Where-Object {($_.ProcessName -like ‘*System*’) -or ($_.ProcessName -like ‘*powershell*’)}`
| Format-Table ProcessName, Company -auto

The output is as follows (when executed from PowerShell console):

PS C:\Users\abhishek.ratan> Get-Process `
| Where-Object {$_.company -like ‘*Microsoft*’}`
| Where-Object {($_.ProcessName -like ‘*System*’) -or ($_.ProcessName -like ‘*powershell*’)}`
| Format-Table ProcessName, Company -auto
ProcessName Company
----------- -------
powershell Microsoft Corporation
powershell_ise Microsoft Corporation
SystemSettings Microsoft Corporation
SystemSettingsBroker Microsoft Corporation

As we can see in this example, another feature of PowerShell is the piped command format support (|). Similar to Unix, a piped command in PowerShell is used to take objects, output from one cmdlet, easily send it to another cmdlet, and so on, until we granularize to a final output.

In this example, we took the output of Get-Process (which is a full process dump of our local machine), and filtered out the processes running from Microsoft Corporation. Then we further refine it to show only those processes that have the System or powershell in the name. The final output is piped to a tabular format with ProcessName and Company as the table header.

You have been reading a chapter from
Practical Network Automation - Second Edition
Published in: Dec 2018
Publisher: Packt
ISBN-13: 9781789955651
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image