Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Machine Learning with R

You're reading from   Practical Machine Learning with R Define, build, and evaluate machine learning models for real-world applications

Arrow left icon
Product type Paperback
Published in Aug 2019
Publisher Packt
ISBN-13 9781838550134
Length 416 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Brindha Priyadarshini Jeyaraman Brindha Priyadarshini Jeyaraman
Author Profile Icon Brindha Priyadarshini Jeyaraman
Brindha Priyadarshini Jeyaraman
Ludvig Renbo Olsen Ludvig Renbo Olsen
Author Profile Icon Ludvig Renbo Olsen
Ludvig Renbo Olsen
Monicah Wambugu Monicah Wambugu
Author Profile Icon Monicah Wambugu
Monicah Wambugu
Arrow right icon
View More author details
Toc

Table of Contents (8) Chapters Close

About the Book 1. An Introduction to Machine Learning 2. Data Cleaning and Pre-processing FREE CHAPTER 3. Feature Engineering 4. Introduction to neuralnet and Evaluation Methods 5. Linear and Logistic Regression Models 6. Unsupervised Learning 1. Appendix

Summary

In this chapter, we learned how to perform several operations on a data frame, including scaling, standardizing, and normalizing. Also, we covered the sorting, ranking, and joining operations with their implementations in R. We discussed the need for pre-processing of the data; and identified and handled outliers, missing values, and duplicate values.

Next, we moved on to the sampling of data. It is important for the data to contain a reasonable sample of each class that is to be predicted. If the data is imbalanced, it can affect our predictions in a negative manner. Therefore, we can use either the undersampling, oversampling, ROSE, or SMOTE techniques imbalanced to ensure that the dataset is representative of all the classes that we want to predict. This can be done using the MICE, rpart, ROSE, and caret packages.

In the next chapter, we will cover feature engineering in detail, where we will focus on extracting features to create models.

You have been reading a chapter from
Practical Machine Learning with R
Published in: Aug 2019
Publisher: Packt
ISBN-13: 9781838550134
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image