Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
OpenCV By Example

You're reading from   OpenCV By Example Enhance your understanding of Computer Vision and image processing by developing real-world projects in OpenCV 3

Arrow left icon
Product type Paperback
Published in Jan 2016
Publisher Packt
ISBN-13 9781785280948
Length 296 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Vinícius G. Mendonça Vinícius G. Mendonça
Author Profile Icon Vinícius G. Mendonça
Vinícius G. Mendonça
David Millán Escrivá David Millán Escrivá
Author Profile Icon David Millán Escrivá
David Millán Escrivá
Prateek Joshi Prateek Joshi
Author Profile Icon Prateek Joshi
Prateek Joshi
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with OpenCV 2. An Introduction to the Basics of OpenCV FREE CHAPTER 3. Learning the Graphical User Interface and Basic Filtering 4. Delving into Histograms and Filters 5. Automated Optical Inspection, Object Segmentation, and Detection 6. Learning Object Classification 7. Detecting Face Parts and Overlaying Masks 8. Video Surveillance, Background Modeling, and Morphological Operations 9. Learning Object Tracking 10. Developing Segmentation Algorithms for Text Recognition 11. Text Recognition with Tesseract Index

Understanding Haar cascades


Haar cascades are cascade classifiers that are based on Haar features. What is a cascade classifier? It is simply a concatenation of a set of weak classifiers that can be used to create a strong classifier. Now, what do we mean by weak and strong classifiers? Weak classifiers are classifiers whose performances are limited. They don't have the ability to classify everything correctly. If you keep the problem really simple, they might perform at an acceptable level. Strong classifiers, on the other hand, are really good at classifying our data correctly. We will see how it all comes together in the next couple of paragraphs. Another important part of Haar cascades is Haar features. These features are simple summations of rectangles and differences of those areas across the image. Let's consider the following figure:

If we want to compute the Haar features of the region ABCD, we just need to compute the difference between the white pixels and the colored pixels in...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £16.99/month. Cancel anytime