Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Neural Networks with Keras Cookbook

You're reading from   Neural Networks with Keras Cookbook Over 70 recipes leveraging deep learning techniques across image, text, audio, and game bots

Arrow left icon
Product type Paperback
Published in Feb 2019
Publisher Packt
ISBN-13 9781789346640
Length 568 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
V Kishore Ayyadevara V Kishore Ayyadevara
Author Profile Icon V Kishore Ayyadevara
V Kishore Ayyadevara
Srinivas Pradeep Srinivas Pradeep
Author Profile Icon Srinivas Pradeep
Srinivas Pradeep
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Building a Feedforward Neural Network FREE CHAPTER 2. Building a Deep Feedforward Neural Network 3. Applications of Deep Feedforward Neural Networks 4. Building a Deep Convolutional Neural Network 5. Transfer Learning 6. Detecting and Localizing Objects in Images 7. Image Analysis Applications in Self-Driving Cars 8. Image Generation 9. Encoding Inputs 10. Text Analysis Using Word Vectors 11. Building a Recurrent Neural Network 12. Applications of a Many-to-One Architecture RNN 13. Sequence-to-Sequence Learning 14. End-to-End Learning 15. Audio Analysis 16. Reinforcement Learning 17. Other Books You May Enjoy

Generating images of digits using Generative Adversarial Networks

A GAN uses a stack of neural networks to come up with a new image that looks very similar to the original set of images. It has a variety of applications in image generation, and the field of GAN research is progressing very quickly to come up with images that are very hard to distinguish from real ones. In this section, we will understand the basics of a GAN how it works and the difference in the variations of GANs.

A GAN comprises two networks: a generator and a discriminator. The generator tries to generate an image and the discriminator tries to determine whether the image it is given as an input is a real image or a generated (fake) image.

To gain further intuition, let's assume that a discriminator model tries to classify a picture into a human face image, or not a human face from a dataset that...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image