Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Neural Network Projects with Python

You're reading from   Neural Network Projects with Python The ultimate guide to using Python to explore the true power of neural networks through six projects

Arrow left icon
Product type Paperback
Published in Feb 2019
Publisher Packt
ISBN-13 9781789138900
Length 308 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
James Loy James Loy
Author Profile Icon James Loy
James Loy
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Machine Learning and Neural Networks 101 FREE CHAPTER 2. Predicting Diabetes with Multilayer Perceptrons 3. Predicting Taxi Fares with Deep Feedforward Networks 4. Cats Versus Dogs - Image Classification Using CNNs 5. Removing Noise from Images Using Autoencoders 6. Sentiment Analysis of Movie Reviews Using LSTM 7. Implementing a Facial Recognition System with Neural Networks 8. What's Next? 9. Other Books You May Enjoy

Summary

In this chapter, we designed and implemented a deep feedforward neural network capable of predicting taxi fares in NYC within an error of ~$3.50. We first performed exploratory data analysis, where we gained important insights on the factors that affect taxi fares. With these insights, we then performed feature engineering, which is the process of using your domain knowledge of the problem to create new features. We also introduced the concept of modularizing our functions in machine learning projects, which allowed us to keep our main code relatively short and neat.

We created our deep feedforward neural network in Keras, and trained it using the preprocessed data. Our results show that the neural network is able to make highly accurate predictions for both short and long distance trips. Even for fixed-rate trips, our neural network was able to produce highly accurate...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image