Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Natural Language Processing with TensorFlow

You're reading from   Natural Language Processing with TensorFlow Teach language to machines using Python's deep learning library

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788478311
Length 472 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Thushan Ganegedara Thushan Ganegedara
Author Profile Icon Thushan Ganegedara
Thushan Ganegedara
Motaz Saad Motaz Saad
Author Profile Icon Motaz Saad
Motaz Saad
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to Natural Language Processing FREE CHAPTER 2. Understanding TensorFlow 3. Word2vec – Learning Word Embeddings 4. Advanced Word2vec 5. Sentence Classification with Convolutional Neural Networks 6. Recurrent Neural Networks 7. Long Short-Term Memory Networks 8. Applications of LSTM – Generating Text 9. Applications of LSTM – Image Caption Generation 10. Sequence-to-Sequence Learning – Neural Machine Translation 11. Current Trends and the Future of Natural Language Processing A. Mathematical Foundations and Advanced TensorFlow Index

Summary


In this chapter, we focused on a very interesting task that involves generating captions for given images. Our learning model was a complex machine learning pipeline, which included the following:

  • Inferring feature vectors for a given image using a CNN

  • Learning word embeddings for the words found in the captions

  • Training an LSTM with the image feature vectors and their corresponding captions

We discussed each component in detail. First, we talked about how we can use a pretrained CNN model on a large classification dataset (that is, ImageNet) to extract good feature vectors without training a model from scratch. For this, we used a VGG with 16 layers. Next we discussed step by step how we can create TensorFlow variables, load the weights into them, and create the network. Finally, we ran a few of the test images through the model to make sure the model is actually capable of recognizing objects in the image.

Then we used the CBOW algorithm to learn good word embeddings of the words found...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £16.99/month. Cancel anytime