Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Modern Python Cookbook

You're reading from   Modern Python Cookbook 133 recipes to develop flawless and expressive programs in Python 3.8

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781800207455
Length 822 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Steven F. Lott Steven F. Lott
Author Profile Icon Steven F. Lott
Steven F. Lott
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Numbers, Strings, and Tuples 2. Statements and Syntax FREE CHAPTER 3. Function Definitions 4. Built-In Data Structures Part 1: Lists and Sets 5. Built-In Data Structures Part 2: Dictionaries 6. User Inputs and Outputs 7. Basics of Classes and Objects 8. More Advanced Class Design 9. Functional Programming Features 10. Input/Output, Physical Format, and Logical Layout 11. Testing 12. Web Services 13. Application Integration: Configuration 14. Application Integration: Combination 15. Statistical Programming and Linear Regression 16. Other Books You May Enjoy
17. Index

Computing regression parameters

Once we've determined that two variables have some kind of relationship, the next step is to determine a way to estimate the dependent variable from the value of the independent variable. With most real-world data, there are a number of small factors that will lead to random variation around a central trend. We'll be estimating a relationship that minimizes these errors, striving for a close fit.

In the simplest cases, the relationship between variables is linear. When we plot the data points, they will tend to cluster around a line. In other cases, we can adjust one of the variables by computing a logarithm or raising it to a power to create a linear model. In more extreme cases, a polynomial is required. The process of linear regression estimates a line that will fit the data with the fewest errors.

In this recipe, we'll show how to compute the linear regression parameters between two variables. This will be based on the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £16.99/month. Cancel anytime