Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
MATLAB for Machine Learning

You're reading from   MATLAB for Machine Learning Unlock the power of deep learning for swift and enhanced results

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781835087695
Length 374 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Getting Started with Matlab
2. Chapter 1: Exploring MATLAB for Machine Learning FREE CHAPTER 3. Chapter 2: Working with Data in MATLAB 4. Part 2: Understanding Machine Learning Algorithms in MATLAB
5. Chapter 3: Prediction Using Classification and Regression 6. Chapter 4: Clustering Analysis and Dimensionality Reduction 7. Chapter 5: Introducing Artificial Neural Network Modeling 8. Chapter 6: Deep Learning and Convolutional Neural Networks 9. Part 3: Machine Learning in Practice
10. Chapter 7: Natural Language Processing Using MATLAB 11. Chapter 8: MATLAB for Image Processing and Computer Vision 12. Chapter 9: Time Series Analysis and Forecasting with MATLAB 13. Chapter 10: MATLAB Tools for Recommender Systems 14. Chapter 11: Anomaly Detection in MATLAB 15. Index 16. Other Books You May Enjoy

Introducing ML

ML is based on the idea of providing computers with a large amount of input data, together with the corresponding correct answers or labels, and allowing them to learn from this data, identifying patterns, relationships, and regularities within them. Unlike traditional programming approaches, in which computers follow precise instructions to perform specific tasks, ML allows machines to independently learn from data and make decisions based on statistical models and predictions.

One of the key concepts of ML is the ability to generalize. This means that a model trained on information in the training dataset should be able to make accurate predictions about new data that it has never seen before. This allows ML to be applied across a wide range of domains.

How to define ML

To better understand the basic concepts of ML, we can start from the definitions formulated by the pioneers in this field. According to Arthur L. Samuel (1959) – “ML is a field...

You have been reading a chapter from
MATLAB for Machine Learning - Second Edition
Published in: Jan 2024
Publisher: Packt
ISBN-13: 9781835087695
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £16.99/month. Cancel anytime