Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Making Your CAM Journey Easier with Fusion 360

You're reading from   Making Your CAM Journey Easier with Fusion 360 Learn the basics of turning, milling, laser cutting, and 3D printing

Arrow left icon
Product type Paperback
Published in Mar 2023
Publisher Packt
ISBN-13 9781804612576
Length 464 pages
Edition 1st Edition
Concepts
Arrow right icon
Author (1):
Arrow left icon
Fabrizio Cimo Fabrizio Cimo
Author Profile Icon Fabrizio Cimo
Fabrizio Cimo
Arrow right icon
View More author details
Toc

Table of Contents (26) Chapters Close

Preface 1. Part 1 – Implementing Turning Operations in Fusion 360
2. Chapter 1: Getting Started with Turning and Its Tools FREE CHAPTER 3. Chapter 2: Handling Part Setup for Turning 4. Chapter 3: Discovering the Tool Library and Custom Tools 5. Chapter 4: Implementing Our First Turning Operation 6. Chapter 5: Discovering More Turning Strategies 7. Part 2 – Milling with Fusion 360
8. Chapter 6: Getting Started with Milling and Its Tools 9. Chapter 7: Optimizing the Shape of Milled Parts to Avoid Design Flaws 10. Chapter 8: Part Handling and Part Setup for Milling 11. Chapter 9: Implementing Our First Milling Operations 12. Chapter 10: Machining the Second Placement 13. Part 3 – Laser Cutting Using Fusion 360
14. Chapter 11: Getting Started with Laser Cutting 15. Chapter 12: Nesting Parts for Laser Cutting 16. Chapter 13: Creating Our First Laser Cutting Operation 17. Part 4 – Using Fusion 360 for Additive Manufacturing
18. Chapter 14: Getting Started with Additive Manufacturing 19. Chapter 15: Managing the Limitations of FDM Printers 20. Chapter 16: Printing Our First Part 21. Chapter 17: Understanding Advanced Printing Settings 22. Part 5 – Testing Our Knowledge
23. Chapter 18: Quiz 24. Index 25. Other Books You May Enjoy

Understanding anisotropies of the printed part

FDM prints feature anisotropies along the printing direction. Typically, the mechanical strength between stacked layers is weaker than the strength in other directions; therefore, the higher loads should always be applied along the layers, not perpendicular to them.

We should always consider these anisotropies when studying part placement, especially if we are about to print a functional prototype that will be loaded by forces and deformations. Let’s take the following component as an example; this part is similar to a circlip ring and will act a bit like a spring:

Figure 15.7: Another example of different printing orientations

Figure 15.7: Another example of different printing orientations

As you can see, there are two different part placements for this part; the first one on the left features the part standing up, while the second shows the part laid on its side.

Both part placements are feasible from a printing perspective. However, since this is a component...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image