Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for the Web

You're reading from   Machine Learning for the Web Gaining insight and intelligence from the internet with Python

Arrow left icon
Product type Paperback
Published in Jul 2016
Publisher Packt
ISBN-13 9781785886607
Length 298 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Andrea Isoni Andrea Isoni
Author Profile Icon Andrea Isoni
Andrea Isoni
Steve Essinger Steve Essinger
Author Profile Icon Steve Essinger
Steve Essinger
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to Practical Machine Learning Using Python FREE CHAPTER 2. Unsupervised Machine Learning 3. Supervised Machine Learning 4. Web Mining Techniques 5. Recommendation Systems 6. Getting Started with Django 7. Movie Recommendation System Web Application 8. Sentiment Analyser Application for Movie Reviews Index

Clustering algorithms

Clustering algorithms are employed to restructure data in somehow ordered subsets so that a meaningful structure can be inferred. A cluster can be defined as a group of data points with some similar features. The way to quantify the similarity of data points is what determines the different categories of clustering.

Clustering algorithms can be divided into different categories based on different metrics or assumptions in which data has been manipulated. We are going to discuss the most relevant categories used nowadays, which are distribution methods, centroid methods, density methods, and hierarchical methods. For each category, a particular algorithm is going to be presented in detail, and we will begin by discussing distribution methods. An example to compare the different algorithms will be discussed, and both the IPython notebook and script are available in the my GitHub book folder at https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_2...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image