Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for OpenCV

You're reading from   Machine Learning for OpenCV Intelligent image processing with Python

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781783980284
Length 382 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Michael Beyeler Michael Beyeler
Author Profile Icon Michael Beyeler
Michael Beyeler
Michael Beyeler (USD) Michael Beyeler (USD)
Author Profile Icon Michael Beyeler (USD)
Michael Beyeler (USD)
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. A Taste of Machine Learning FREE CHAPTER 2. Working with Data in OpenCV and Python 3. First Steps in Supervised Learning 4. Representing Data and Engineering Features 5. Using Decision Trees to Make a Medical Diagnosis 6. Detecting Pedestrians with Support Vector Machines 7. Implementing a Spam Filter with Bayesian Learning 8. Discovering Hidden Structures with Unsupervised Learning 9. Using Deep Learning to Classify Handwritten Digits 10. Combining Different Algorithms into an Ensemble 11. Selecting the Right Model with Hyperparameter Tuning 12. Wrapping Up

Understanding ensemble methods

The goal of ensemble methods is to combine the predictions of several individual estimators built with a given learning algorithm in order to solve a shared problem. Typically, an ensemble consists of two major components:

  • a set of models
  • a set of decision rules that govern how the results of these models are combined into a single output
The idea behind ensemble methods has much to do with the wisdom of the crowd concept. Rather than the opinion of a single expert, we consider the collective opinion of a group of individuals. In the context of machine learning, these individuals would be classifiers or regressors. The idea is that if we just ask a large enough number of classifiers, one of them ought to get it right.

A consequence of this procedure is that we get a multitude of opinions about any given problem. So how do we know which classifier...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image