Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning R for Geospatial Analysis

You're reading from   Learning R for Geospatial Analysis Leverage the power of R to elegantly manage crucial geospatial analysis tasks

Arrow left icon
Product type Paperback
Published in Dec 2014
Publisher Packt
ISBN-13 9781783984367
Length 364 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Michael Dorman Michael Dorman
Author Profile Icon Michael Dorman
Michael Dorman
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. The R Environment FREE CHAPTER 2. Working with Vectors and Time Series 3. Working with Tables 4. Working with Rasters 5. Working with Points, Lines, and Polygons 6. Modifying Rasters and Analyzing Raster Time Series 7. Combining Vector and Raster Datasets 8. Spatial Interpolation of Point Data 9. Advanced Visualization of Spatial Data A. External Datasets Used in Examples
B. Cited References
Index

Chapter 4. Working with Rasters

In this chapter, we move on to the realm of spatial data analysis in R. We begin by introducing the properties and usage principles of the classes used to store raster data in R. For that matter, we are going to first introduce the simpler (nonspatial) structures that are conceptually related to rasters: matrices and arrays. We then cover the more sophisticated classes defined in the raster package to represent spatial raster data. You will learn to create, subset, and save objects of these classes as well as to query the characteristics of rasters we have at hand. Afterwards, you will learn two basic operations involving rasters: overlay and reclassification. At the same time, we will see some examples of visualizing raster data in R to help us get a better understanding of the data we have.

In this chapter, we'll cover the following topics:

  • Using matrices to represent two-dimensional sets of numeric values
  • Using arrays to represent three-dimensional...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image