Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning OpenCV 5 Computer Vision with Python

You're reading from   Learning OpenCV 5 Computer Vision with Python Tackle computer vision and machine learning with the newest tools, techniques and algorithms

Arrow left icon
Product type Paperback
Published in Jul 2025
Publisher Packt
ISBN-13 9781803230221
Length
Edition 4th Edition
Arrow right icon
Authors (2):
Arrow left icon
Joe Minichino Joe Minichino
Author Profile Icon Joe Minichino
Joe Minichino
Joseph Howse Joseph Howse
Author Profile Icon Joseph Howse
Joseph Howse
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

1. Learning OpenCV 5 Computer Vision with Python, Fourth Edition: Tackle tools, techniques, and algorithms for computer vision and machine learning FREE CHAPTER
2. Setting Up OpenCV 3. Handling Files, Cameras, and GUIs 4. Processing Images with OpenCV 5. Detecting and Recognizing Faces 6. Retrieving Images and Searching Using Image Descriptors 7. Building Custom Object Detectors 8. Tracking Objects 9. Camera Models and Augmented Reality 10. Introduction to Neural Networks with OpenCV 11. OpenCV Applications at Scale Appendix A: Bending Color Space with the Curves Filter

Summary

This chapter introduced AR, along with a robust set of approaches to the problem of tracking an image in 3D space.

We began by learning the concept of 6DOF tracking and different ways of representing rotations. We recognized that familiar tools such as ORB descriptors, FLANN-based matching, and Kalman filtering are useful in this kind of tracking, but that we also needed to work with camera and lens parameters in order to solve the PnP problem.

Next, we addressed practical considerations of how best to represent a reference object (such as a book cover or a photo print) in the form of a grayscale image, a set of 2D keypoints, and a set of 3D keypoints.

We proceeded to implement a class that encapsulated a demo of image tracking in 3D space, with a 3D highlighting effect as a basic form of AR. Our implementation dealt with real-time considerations, such as the need to update the Kalman filter's transition matrix based on fluctuations in the frame rate.

Finally, we considered...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £16.99/month. Cancel anytime