Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Java Deep Learning Projects

You're reading from   Java Deep Learning Projects Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs

Arrow left icon
Product type Paperback
Published in Jun 2018
Publisher Packt
ISBN-13 9781788997454
Length 436 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Deep Learning 2. Cancer Types Prediction Using Recurrent Type Networks FREE CHAPTER 3. Multi-Label Image Classification Using Convolutional Neural Networks 4. Sentiment Analysis Using Word2Vec and LSTM Network 5. Transfer Learning for Image Classification 6. Real-Time Object Detection using YOLO, JavaCV, and DL4J 7. Stock Price Prediction Using LSTM Network 8. Distributed Deep Learning – Video Classification Using Convolutional LSTM Networks 9. Playing GridWorld Game Using Deep Reinforcement Learning 10. Developing Movie Recommendation Systems Using Factorization Machines 11. Discussion, Current Trends, and Outlook 12. Other Books You May Enjoy

Summary

In this chapter, we saw how to develop an end-to-end project that will detect objects from video frames when video clips play continuously. We saw how to utilize the pre-trained Tiny YOLO model, which is a smaller variant of the original YOLO v2 model.

Furthermore, we covered some typical challenges in object detection from both still images and videos, and how to solve them using bounding box and non-max suppression techniques. We learned how to process a video clip using the JavaCV library on top of DL4J. Finally, we saw some frequently asked questions that should be useful in implementing and extending this project.

In the next chapter, we will see how to develop anomaly detection, which is useful in fraud analytics in finance companies such as banks, and insurance and credit unions. It is an important task to grow the business. We will use unsupervised learning algorithms...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £16.99/month. Cancel anytime