The need for training in machine learning
You have already seen that machine learning is a method of pattern recognition. Machine learning reaches an answer by recognizing and sorting out patterns from the given learning data. It may seem easy when you just look at the sentence, but the fact is that it takes quite a long time for machine learning to sort out unknown data, in other words, to build the appropriate model. Why is that? Is it that difficult to just sort out? Does it even bother to have a "learning" phase in between?
The answer is, of course, yes. It is extremely difficult to sort out data appropriately. The more complicated a problem becomes, the more it becomes impossible to perfectly classify data. This is because there are almost infinite patterns of categorization when you simply say "pattern classifier." Let's look at a very simple example in the following graph:
There are two types of data, circles and triangles, and the unknown data, the square...